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Preface
Plotly's Dash framework allows Python programmers to develop complete analytic data 
apps and interactive dashboards. This book will help you explore the functionalities of 
Dash for visualizing data in different ways and getting the most out of your data.

You'll start with an overview of the Dash ecosystem, its main packages, and the available 
third-party packages crucial for structuring and building different parts of your apps. 
Next, you will learn how to create a basic Dash app and add different features to it. You'll 
then integrate controls such as dropdowns, checkboxes, sliders, date pickers, and more 
in the app, and then link them to charts and other outputs. Depending on the data you 
are visualizing, you will also add several types of charts, including scatter plots, line plots, 
bar charts, histograms, maps, and more, as well as exploring the options available for 
customizing them.

By the end of this book, you will have developed the skills you need to create and 
deploy an interactive dashboard, be able to handle complexity and code refactoring, and 
understand the process of improving your application.

Who this book is for
This Plotly Dash book is for data professionals and data analysts who want to gain a better 
understanding of their data with the help of different visualizations and dashboards. Basic 
to intermediate-level knowledge of the Python programming language is expected to 
grasp the concepts covered in this book more effectively. 

What this book covers
Chapter 1, Overview of the Dash Ecosystem, will help you attain a good understanding of 
the Dash ecosystem, the main packages used, as well as the available third-party packages. 
By the end of this chapter, you will be able to differentiate between the different elements 
of an app and what each is responsible for, and you will have built a minimal app.
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Chapter 2, Exploring the Structure of a Dash App, demonstrates how to add some 
interactive functionality to the app we created earlier. We will go through the app 
callbacks and see how they allow your users to connect visual elements of your app, and 
how you can let users use some of those elements to control others by creating special 
callback functions.

Chapter 3, Working with Plotly's Figure Objects, provides an in-depth introduction to the 
figure object, its components, how it can be manipulated, and how it can be converted to 
different formats. Later on, we will use this understanding to build specific types of charts 
as needed in our application.

Chapter 4, Data Manipulation and Preparation - Paving the Way to Plotly Express, introduces 
an overview of tidy data, as well as the high-level Plotly Express package, and shows how it 
uses the grammar of graphics to easily produce charts and map data to visual elements.

Chapter 5, Interactively Comparing Values with Bar Charts and Dropdown Menus, goes  
in some depth into the available options for graphs and explores further possibilities. 
Then, we will see how to allow users to select which values they want to compare using 
drop-down menus.

Chapter 6, Exploring Variables with Scatter Plots and Filtering Subsets with Sliders, moves 
on to one of the most frequently used chart types: scatter plots. Like we did with bar 
charts, we will see many different ways to customize them. Scatter plots provide even 
more options that we will explore, such as mapping the size of the points to a certain 
variable, dealing with overplotting, and handling a large number of points.

Chapter 7, Exploring Map Plots and Enriching Your Dashboards with Markdown, explores 
a new type of chart that we see in many situations. There are many ways to plot data 
on maps, and we will explore two of the most frequently used types: scatter maps and 
choropleth maps.

Chapter 8, Calculating Data Frequency and Building Interactive Tables, explores the 
different ways of creating histograms and customizing them, as well as splitting the data in 
different ways and then counting the resulting values.

Chapter 9, Letting Your Data Speak for Itself with Machine Learning, shows us how 
clustering works, and also uses a test model to evaluate performance. We will also explore 
a technique to evaluate various clusters and finally, we will design an interactive app  
using Kmeans.

Chapter 10, Turbo-charge Your Apps with Advanced Callbacks, introduces the  
pattern-matching callback to achieve dynamic app modification based on user interaction 
and various other conditions.
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Chapter 11, URLs and Multi-Page Apps, introduces a new architecture that allows us to 
incorporate multiple apps in one (each corresponding to a page in the app). The other 
interesting feature we will explore is using URLs either as inputs or outputs, interacting 
with different elements in the app.

Chapter 12, Deploying Your App, shows you how to deploy your app on a server, where 
people can access it from anywhere so you can share it with the world. Different options 
are available, and we will go through two simple options that might be useful.

Chapter 13, Next Steps, showcases the different options in taking your app(s) to the next 
level. This chapter provides some pointers on things you might want to explore.

To get the most out of this book
You will need a system with a good internet connection and an AWS account.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at  
https://github.com/PacktPublishing/Interactive-Dashboards-and-
Data-Apps-with-Plotly-and-Dash. In case there's an update to the code, it will be 
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800568914_ColorImages.pdf.

Code in Action
Code in Action videos for this book can be viewed at (https://bit.ly/3vaXYQJ).

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800568914_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800568914_ColorImages.pdf
https://bit.ly/3vaXYQJ
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "Our dataset will consist of the files in the data folder in the root of 
the repository."

A block of code is set as follows:

import plotly.express as px

gapminder = px.data.gapminder()

gapminder

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

import os

import pandas as pd

pd.options.display.max_columns = None

os.listdir(‚data')

[‚PovStatsSeries.csv',

 'PovStatsCountry.csv',

 'PovStatsCountry-Series.csv',

 'PovStatsData.csv',

 'PovStatsFootNote.csv']

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"Another important column is the Limitations and exceptions column."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

mailto:customercare@packtpub.com
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Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com




This section provides a general overview of the Dash ecosystem, and shows how to get 
started with a minimal functional app.

This section comprises the following chapters:

• Chapter 1, Overview of the Dash Ecosystem

• Chapter 2, Exploring the Structure of a Dash App

• Chapter 3, Working with Plotly's Figure Objects

• Chapter 4, Data Manipulation and Preparation -  Paving the Way to Plotly Express

Section 1:  
Building a Dash App





1
Overview of the 
Dash Ecosystem

One of the few constants in our work with data is the amount of change in the volume, 
sources, and types of data that we deal with. Being able to quickly combine data from 
different sources and explore them is crucial. Dash is not only for exploring data; it can 
be used for almost all phases of the data analysis process, from exploration to operational 
production environments.

In this chapter, we will get an overview of Dash's ecosystem and focus on building the 
layout, or the user-facing part, of the app. By the end of the chapter, you will be able to 
build a running app with almost any visual component you want, but without interactivity. 

The following topics will be covered:

• Setting up your environment

• Exploring Dash and other supporting packages

• Understanding the general structure of a Dash app

• Creating and running the simplest app

• Adding HTML and other components to the app

• Learning how to structure the layout and managing themes
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Technical requirements
Every chapter will have slightly different requirements, but there are some that you will 
need throughout the book.

You should have access to Python 3.6 or higher, which can be easily downloaded from 
https://www.python.org, as well as a text editor or an integrated development 
environment (IDE) so you can edit code.

For this chapter, we will be using Dash, Dash HTML Components, and Dash Bootstrap 
Components, which can be installed together with all other required packages by 
following the instructions in the following section. All code and data required for this 
book can be downloaded from the book's GitHub repository, which can be found at 
https://github.com/PacktPublishing/Interactive-Dashboards-and-
Data-Apps-with-Plotly-and-Dash. As I just mentioned, the following section will 
show in detail how to get started with your setup.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_01.

Check out the following video to see the Code in Action at https://bit.ly/3atXPjc.

Setting up your environment
With the fast pace of change in all the packages used in the book, you will most likely 
come across some differences in functionality, so in order to reproduce the exact 
outcomes described in the book, you can clone the book's repository, install the packages 
used (in the specified versions), and use the included dataset. From the command line, go 
to a folder in which you want to build the project and do the following:

1. Create a Python virtual environment in a folder called dash_project (or any 
other name you want). This will also create a new folder with the name you chose:

python3 –m venv dash_project

2. Activate the virtual environment.

On Unix or macOS, run this:
source dash_project/bin/activate

On Windows, run this:
dash_project\Scripts\activate.bat

https://www.python.org
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_01
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_01
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_01
https://bit.ly/3atXPjc
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3. Go to the created folder:

cd dash_project

4. Clone the book's GitHub repository:

git clone   https://github.com/PacktPublishing/
Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash 

5. You should now have a file containing the required packages and their versions 
called requirements.txt. You can install those packages by going to the 
repository's folder and running the install command as follows:

cd Interactive-Dashboards-and-Data-Apps-with-Plotly-and-
Dash/

pip install -r requirements.txt

You should find a copy of the dataset in the data folder, which was downloaded from 
this link: https://datacatalog.worldbank.org/dataset/poverty-and-
equity-database. You can get the latest version if you want, but as with packages, if 
you want to get the same results, it's better to work with the provided dataset.

In order for Plotly figures and apps to be displayed in JupyterLab, you will need to install 
Node.js, which can be install from https://nodejs.org.

You will also need to install the JupyterLab Plotly extension, which can be done by 
running the following from the command line in your virtual environment:

jupyter labextension install jupyterlab-plotly@4.14.1

Note that the version number at the end should correspond to the version of Plotly that 
you are running. You can replace the preceding version numbers if you want to upgrade 
(making sure to upgrade the Plotly Python package as well).

Once you have run the preceding code, you should have everything you need to follow along. 
You will see that each chapter of this book builds on the previous one: we will be building an 
app that adds more and more functionality and complexity as we go through the chapters.

The main objective is to put you in a practical setting as much as possible. In general, it is 
straightforward to create any standalone Dash component, but it gets more challenging 
when you already have a few components in a running app. This becomes clear when 
you have to decide how to change the layout to accommodate new changes and how to 
refactor code, focusing on the details without losing sight of the big picture.

Now that the environment has been established, let's get an overview of Dash.

https://datacatalog.worldbank.org/dataset/poverty-and-equity-database
https://datacatalog.worldbank.org/dataset/poverty-and-equity-database
https://nodejs.org
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Exploring Dash and other supporting packages
Although not strictly necessary, it's good to know the main components that are used 
to make Dash and its dependencies, especially for more advanced usage, and in order to 
know how and where to get more information:

Figure 1.1 – What Dash is made of

Note
One of the main advantages of using Dash is that it allows us to create fully 
interactive data, analytics, and web apps and interfaces, using pure Python, 
without having to worry about HTML, CSS, or JavaScript.

As you can see in Figure 1.1, Dash uses Flask for the backend. For producing charts, it 
uses Plotly, although it is not strictly required, but it is the best-supported package for 
data visualization. React is used for handling all components, and actually a Dash app is 
rendered as a single-page React app. The most important things for us are the different 
packages that we will be using to create our app, which we will be covering next.

Tip
For people who are familiar with or invested in learning Matplotlib, there 
is a special set of tools to convert Matplotlib figures to Plotly figures. Once 
you have created your figure in Matplotlib, you can convert it to Plotly with 
one command: mpl_to_plotly. As of the time of this writing, this is 
supported for Matplotlib<=3.0.3 only. Here is a full example:

%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt

from plotly.tools import mpl_to_plotly

mpl_fig, ax = plt.subplots()

ax.scatter(x=[1, 2, 3], y=[23, 12, 34])

plotly_fig = mpl_to_plotly(mpl_fig)

plotly_fig



Exploring Dash and other supporting packages     7

The different packages that Dash contains
Dash is not one big package that contains everything. Instead, it consists of several 
packages, each handling a certain aspect. In addition, as we will see later, there are several 
third-party packages that are used, and the community is encouraged to develop their 
own functionality by creating special Dash packages.

The following are the main packages that we will mostly be using in this chapter, and we 
will explore others in later chapters:

• Dash: This is the main package, which provides the backbone of any app, through 
the dash.Dash object. It also provides a few other tools for managing interactivity 
and exceptions, which we will get into later as we build our app.

• Dash Core Components: A package that provides a set of interactive components 
that can be manipulated by users. Dropdowns, date pickers, sliders, and many more 
components are included in this package. We will learn how to use them to manage 
reactivity in Chapter 2, Exploring the Structure of a Dash App, and will be focusing 
on how to use them in detail in Part 2 of the book.

• Dash HTML Components: This package provides all the available HTML tags as 
Python classes. It simply converts Python to HTML. For example, you can write 
dash_html_components.H1('Hello, World') in Python, and it will be 
converted to <h1>Hello, World</h1> and rendered as such in the browser.

• Dash Bootstrap Components: This is a third-party package that adds Bootstrap 
functionality to Dash. This package and its components take care of a lot of options 
related to layouts and visual signals. Laying out elements side by side or on top of 
one another, specifying their sizes based on the browser's screen size, and providing 
a set of encoded colors for better communicating with users are some of the benefits 
of using it.

Tip
The recommended way to install the main packages of Dash is to simply install 
Dash, and it will automatically handle installing the other packages, ensuring 
that they get installed with the correct versions. Simply run pip install 
dash from the command line. For upgrades, that would be pip install 
dash --upgrade.

We will now take a brief look at the general structure of a typical Dash app, after which we 
will start coding.
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Understanding the general structure of a  
Dash app
The following diagram shows what generally goes into creating a Dash app. We typically 
have a file called app.py, although you can name it whatever you want. The file is 
shown as the column on the right, with the different parts split by lines, just to visually 
distinguish between them, while on the left is the name of each part:

Figure 1.2 – The structure of a Dash app

Let's look at each app part in detail:

• Imports (boilerplate): Like any Python module, we begin by importing the 
required packages, using their usual aliases.

• App instantiation: A straightforward way to create the app, by creating the app 
variable in this case. The __name__ value for the name parameter is used to make 
it easy for Dash to locate static assets to be used in the app.

• App layout: The subject of this chapter, which we will focus on in detail. This 
is where we set the user-facing elements, or the frontend. We usually define a 
container element, html.Div in the figure, that takes a list of components for its 
children parameter. These components will be displayed in order when the app 
renders, each placed below the previous element. In the following section, we will 
create a simple app with a minimal layout.
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• Callback functions: This is the subject of Chapter 2, Exploring the Structure of a Dash 
App, where we will go through how interactivity works in detail; this won't be covered 
in this chapter. For now, it's enough to know that this is where we define as many 
functions as needed to link the visible elements of the app to each other, defining the 
functionality that we want. Typically, functions are independent, they don't need to be 
defined within a container, and their order does not matter in the module.

• Running the app: Using the Python idiom for running modules as scripts, we run 
the app.

As I promised, we are now ready to start coding.

Creating and running the simplest app
Using the structure that we just discussed, and excluding callback functions, let's now 
build our first simple app!

Create a file and name it app.py, and write the following code:

1. Import the required packages using their usual aliases:

import dash

import dash_html_components as html

2. Create (instantiate) the app:

app = dash.Dash(__name__)

3. Create the app's layout:

app.layout = html.Div([

    html.H1('Hello, World!')

])

4. Run the app:

if __name__ == '__main__':

    app.run_server(debug=True)

A few points before running the app. First, I strongly suggest that you don't copy and paste 
code. It's important to make sure you remember what you coded. It's also useful to explore 
the possibilities provided by each component, class, or function. Most IDEs provide hints 
on what is possible.
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This app's layout contains one element, which is the list passed to html.Div, 
corresponding to its children parameter. This will produce an H1 element on the page. 
Finally, note that I set debug=True in the app.run_server method. This activates 
several developer tools that are really useful while developing and debugging.

You are now ready to run your first app. From the command line, in the same folder 
where you saved your app file, run this:

python app.py 

You might need to run the preceding command using python3 if your system is not 
configured to use version three by default:

python3 app.py

You should now see an output like that shown in Figure 1.3, indicating that the app is running:

Figure 1.3 – Command-line output while running the app

Congratulations on running your very first Dash app! Now, if you point your browser to 
the URL shown in the output, http://127.0.0.1:8050, you should see the "Hello, 
World!" message in H1 on the page. As you can see, it shows that it is serving a Flask app 
called "app," with a warning that this server is not designed for production use. We will 
cover deployment in a later chapter, but this server is good enough for developing and 
testing your apps. You can also see that we are in debug mode:

Figure 1.4 – App rendered in the browser
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As specified, we see the text in H1, and we can also see the blue button as well. Clicking on 
this button will open some options in the browser, and it will be more useful once there 
are callback functions and/or errors while running the app. We wouldn't have gotten the 
blue button if we had run the app with debug=False, which is the default.

Now that we have established a good-enough understanding of the main elements that 
go into creating a Dash app, and we have run a minimal one, we are ready to explore 
two packages that are used for adding and managing visible elements: first, Dash HTML 
Components, and after that, we will explore how to use Dash Bootstrap Components.

Adding HTML and other components to  
the app
From now until the end of this chapter, we will mainly be focusing on the app.layout 
attribute of our app and making changes to it. It's straightforward to do so; we simply add 
elements to the top-level html.Div element's list (the children parameter):

html.Div(children=[component_1, component_2, component_3, …])

Adding HTML components to a Dash app
Since the available components in the package correspond to actual HTML tags, it is  
the most stable package. Let's quickly explore the parameters that are common to all  
its components.

At the time of this writing, Dash HTML Components has 131 components, and there are 
20 parameters that are common to all of them.

Let's go over some of the most important ones that we will frequently be using:

• children: This is typically the main (and first) container of the content of the 
component. It can take a list of items, or a single item.

• className: This is the same as the class attribute, only renamed as such.

• id: While we won't be covering this parameter in this chapter, it is the crucial one 
in making interactivity work, and we will be using it extensively while building the 
app. For now, it's enough to know that you can set arbitrary IDs to your components 
so you can identify them and later use them for managing interactivity.
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• style: This is similar to the HTML attribute of the same name, but with a few 
differences. First, its attributes are set using camelCase. So, say you wanted to set  
the following attributes in Dash HTML Components:

<h1 style="color:blue; font-size: 40px; margin-left: 
20%">A Blue Heading</h1>

You would specify them this way:
import dash_html_components as html

html.H1(children='A Blue Heading',

        style={'color': 'blue',

               'fontSize': '40px',

               'marginLeft': '20%'})

As you have most likely noticed, the style attribute is set using a Python dictionary.
The other parameters have different uses and rules, depending on the respective 
component that they belong to. Let's now practice adding a few HTML elements to our 
app. Going back to the same app.py file, let's experiment with adding a few more HTML 
elements and run the app one more time, as we just did. I kept the top and bottom parts 
the same, and I mainly edited app.layout:

…

app = dash.Dash(__name__)

app.layout = html.Div([

    html.H1('Poverty And Equity Database',

            style={'color': 'blue',

                   'fontSize': '40px'}),

    html.H2('The World Bank'),

    html.P('Key Facts:'),

    html.Ul([

        html.Li('Number of Economies: 170'),

        html.Li('Temporal Coverage: 1974 - 2019'),

        html.Li('Update Frequency: Quarterly'),

        html.Li('Last Updated: March 18, 2020'),

        html.Li([

            'Source: ',

          html.A('https://datacatalog.worldbank.org/dataset/
poverty-and-equity-database',         href='https://
datacatalog.worldbank.org/dataset/poverty-and-equity-database')
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        ])

    ])

])

…

python app.py

That should produce the following screen:

Figure 1.5 – Updated app rendered in the browser

Tip
If you are familiar with HTML, this should look straightforward. If not, please 
check out a basic tutorial online. A great source to start would be W3Schools: 
https://www.w3schools.com/html/.

In the updated part, we just added a <p> element and an unordered list, <ul>, within 
which we added a few list items, <li> (using a Python list), the last of which contained a 
link using the <a> element.

Note that since these components are implemented as Python classes, they follow Python's 
conventions of capitalizing class names: html.P, html.Ul, html.Li, html.A, and so on.

Feel free to experiment with other options: adding new HTML components, changing the 
order, trying to set other attributes, and so on.

https://www.w3schools.com/html/
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Learning how to structure the layout and 
managing themes
So far, we have discussed the basic structure of a Dash app and gone through a brief overview 
of its main elements: the imports, app instantiation, app layout, callbacks (which we will cover 
in the next chapter), and running the app. We created a bare-bones app, and then we learned 
how to add a few HTML elements to it. We are now ready to take our app to the next level—
from a layout perspective. We will keep working with the app.layout attribute and control 
it in a more powerful and flexible way using the Dash Bootstrap Components package.

Bootstrap is basically a set of tools that abstract away many details for handling the layout 
of web pages. Here are some of the most important benefits of using it:

• Themes: As we will see in a moment, changing the app's theme is as simple as 
providing an additional argument while instantiating the app. Dash Bootstrap 
Components ships with a set of themes that you can select from and/or edit.

• Grid system: Bootstrap provides a powerful grid system, so we can think about our 
pages more from a user perspective (rows and columns) and not have to focus on 
the screen attributes (pixels and percentages), although we still have access to those 
low-level details whenever we need to.

• Responsiveness: Having a large number of possible screen sizes makes it almost 
impossible to properly design page layouts. This is handled for us, and we can also 
fine-tune the behavior of page elements to control how their sizes change as the 
screen size changes.

• Prebuilt components: A set of prebuilt components is also provided, which we will 
be using. Alerts, buttons, drop-down menus, and tabs are some of the components 
that Bootstrap provides.

• Encoded colors: We also get a set of colors for easy communication with users, in 
case we have a warning, an error, simple information, and so on.

Let's explore these features one by one.

Themes
First, let's see how easy it is to change the theme of an app. In the same app.py file, add 
the following import and the new argument to the app creation call:

import dash_bootstrap_components as dbc

…

app = dash.Dash(__name__, external_stylesheets=[dbc.themes.
BOOTSTRAP])

…



Learning how to structure the layout and managing themes     15

Running the app again, you should see that the theme has changed. As shown in Figure 
1.6, you can also see other sample themes, and I also added their names and how to set 
them at the bottom of each page:

Figure 1.6 – Theme samples and how to set them

You can see how easy it is to completely change the look and feel of the app, simply by 
changing one argument. Note also that the color and font size of the <h1> element were 
overridden in the style argument. We specifically set the color to "blue" and the size to 
"40px". Usually, this is not advisable; for example, in the two dark themes in the figure it 
is very difficult to read the blue text. So, be careful when you make such changes.

Grid system and responsiveness
Another powerful benefit that we get from Bootstrap is its grid system. When adding 
Dash HTML Components, we saw that we can do so by appending items to the 
children parameter of the main html.Div element. In this case, every added item 
occupies the full width of the screen and takes as much screen height as it needs to display 
its contents. The order of the elements in the list determines their order of display on the 
screen as well.
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Displaying elements side by side in columns
While it's possible to do this by editing the style parameter of any HTML element, 
it is a bit tedious and can be brittle. You have to worry about too many details, and it 
might break in unexpected ways. With Bootstrap, you simply define a column, and that 
in turn behaves as an independent screen, displaying its elements on top of one another, 
with each element occupying the full width of this mini screen. Columns' widths can 
also be specified in powerful and flexible ways. The grid system divides the screen into 
12 columns, and the width of a column can be specified by using a number from 1 to 12 
inclusive. Figure 1.7 shows how the columns can be defined, and how they would change 
for screens of different size:

Figure 1.7 – The same column layout on two screen sizes

As you can see, the two screens are identical, and the resizing happens automatically, 
while maintaining the proportions.

In many cases, this might not be exactly what you want. When the screen width becomes 
smaller, it might make more sense to expand the columns to be more easily readable by 
the users. For this, we have the option of specifying the width of columns for each of five 
possible screen widths: xs (extra-small), sm (small), md (medium), lg (large), and xl 
(extra-large). These are also the names of the parameters that you can set:
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Figure 1.8 – Granular control of column width based on screen size

Figure 1.8 shows how this is achieved by setting two arguments for the column. The way 
to set these values is simple, as indicated in the figure. The full code would be something 
like this:

import dash_boostrap_components as dbc

dbc.Col(children=[child1, child2, …], lg=6, md=12)

The lg=6, md=12 arguments simply mean that we want this column to have a width 
of six when the screen is large (lg), which means 6 ÷ 12, or half the screen's width. On 
screens of medium size (md), set the column width to 12, which means the full width of 
the screen (12 ÷ 12).

You might be wondering how we can have the columns in the middle of the page, and not 
starting from the left, as is the case in Figures 1.7 and 1.8. The width and the different size 
parameters can also take a dictionary, one of the keys of which can be offset, and this is 
how you set its horizontal location on the screen:

dbc.Col(children=[child1, child2, …], lg={'size': 6, 'offset': 
4}, md=12)
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As you can see, lg became a dictionary where we indicated that we want that column to 
skip the first four columns from the left, and be displayed after that, in the specified size.

Finally, if you want to place multiple columns next to each other, you simply have to place 
them in a row (with Row), and they will be placed next to each other:

Figure 1.9 – Columns side by side in a row

In order to produce the layout in Figure 1.9, we can simply place the three columns in a 
list and pass it as the children parameter to a row element:

dbc.Row([
    dbc.Col('Column 1', width=2),
    dbc.Col('Column 2', width=5),
    dbc.Col('Column 3', width=4),
])

Prebuilt components
While we won't cover them all, we will be using several of those components, and they are 
generally straightforward to create. Please check the documentation for ideas and details 
of each component: https://dash-bootstrap-components.opensource.
faculty.ai/. We will shortly modify the app to include some prebuilt components.

Encoded colors
Although you can set any color you want for text, background colors, and many other 
elements using its hexadecimal representation, Bootstrap provides a set of named colors 
based on the type of information you are trying to convey. This can be set as the color 
parameter in several components, and it would have a visual meaning to users. For 
example, setting color="danger" would cause the component to appear in red, and 
color="warning" as yellow. The available color names are primary, secondary, success, 
warning, danger, info, light, and dark.

https://dash-bootstrap-components.opensource.faculty.ai/
https://dash-bootstrap-components.opensource.faculty.ai/
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Adding Dash Bootstrap components to our app
We will now add two new related components to the app: Tabs and Tab. As you might 
have guessed, Tabs is simply a container of Tab components. The result we are aiming 
for is adding a little more information to the page, and organizing it under new tabs, as 
you can see in Figure 1.10:

Figure 1.10 – Adding tabs to the app

Tip
One of the most important skills to develop while learning Dash is code 
refactoring. While the latest version of the app is still very simple, it is a very 
good idea to make sure you know how to manually refactor the code from the 
previous version to the new one. The more components you have in your app, 
the more attention you will need to give to the refactoring details. I suggest you 
always do this manually and do not simply copy and paste the latest version of 
the app.

In order to create the tabs, and get the new content in the form you see in Figure 1.10, you 
will need to make the following changes: 

html.H2('The World Bank'),

dbc.Tabs([

    dbc.Tab([

        html.Ul([

            # same code to define the unordered list

        ]),

    ], label='Key Facts'),

    dbc.Tab([

        html.Ul([

            html.Br(),
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            html.Li('Book title: Interactive Dashboards and 
Data Apps with Plotly and Dash'),

            html.Li(['GitHub repo: ',

                     html.A('https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash',

                            href='https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash')])

        ])

    ], label='Project Info')

As you can see, we have added one Tabs element, within which we added two Tab 
elements. In the first one, we simply used the same code that went into defining our 
ordered list. In the second, we added a similar unordered list with new content. OK, you 
can copy this part if you want! You can also see how to specify the labels of the tabs, by 
setting a value for the label parameter.

Now you can run your updated app again, and make sure that the new content went to the 
right place, and that the tabs work as expected.

We are now ready to add some interactivity to our app.

Summary
We have learned how to create a minimal app and saw indeed how simple the process is. 
We then explored the main Dash packages used to create visual elements on a web page. 
With what we covered in this chapter, you have enough information to create almost any 
layout, with any elements you want on a page. The discussion and examples were not 
comprehensive, however. We will be using and discussing those components and many 
others, so you can master their use.

In the next chapter, we will turn our attention to the mechanism of adding interactivity to 
our app. We will set up the app such that the user will be able to explore different options 
by selecting what exactly they would like to analyze from our dataset.
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Dash App
We are now ready to tackle the mechanism through which Dash creates interactivity – the  
heart of Dash, if you will. Once you are comfortable with creating callback functions 
that link different elements of the layout, combined with what you learned in Chapter 1, 
Overview of the Dash Ecosystem, you should be well equipped to be able to convert datasets 
into interactive apps in a very short period of time. The remainder of this book will go 
into much more detail and offer many more options of how to do this. However, these two 
chapters should be sufficient for creating visual layouts, as well as connecting them and 
making them interactive. We will mainly explore callback functions in this chapter; the 
following topics will be covered:

• Using Jupyter Notebooks to run Dash apps
• Creating a standalone pure Python function
• Understanding the ID parameter of Dash components
• Using Dash inputs and outputs
• Incorporating the function into the app – creating your first reactive program
• Running your first interactive app
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Technical requirements
In addition to the packages that we used in Chapter 1, Overview of the Dash Ecosystem 
(for example, Dash, Dash HTML Components, and Dash Bootstrap Components), we 
will be, most importantly, working with Dash Core Components. We will also look at 
how to run Dash apps within a Jupyter Notebook environment, and for that, we will be 
using the jupyter_dash package along with JupyterLab. Later in the chapter, when we 
incorporate new functionality into the app, we will use pandas for data manipulation.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_02.

Check out the following video to see the Code in Action at https://bit.ly/3tC0ZsW.

Using Jupyter Notebooks to run Dash apps
With a change to imports and a minor change to app instantiation, we can easily start to 
run our apps within Jupyter Notebook environments. The package that makes this possible 
is jupyter_dash. Essentially, the difference is that we import the JupyterDash object 
(instead of importing Dash), and app instantiation occurs by calling this object, as follows:

from jupyter_dash import JupyterDash

app = JupyterDash(__name__)

One of the advantages of running apps in a notebook environment is that it is less tedious 
to make small changes, iterate them, and see results. Working with an IDE, the command 
line, and the browser, you need to constantly shift between them, while in a notebook 
environment, everything is in one place. This makes introducing simple changes and 
testing them easier. It can make your notebooks far more powerful and interesting as well. 

The jupyter_dash package also provides an additional option while running the app, 
where you can determine whether you want to run the app in one of three modes: 

• external: In a separate browser window, exactly as we have done so far 

• inline: In the code output area of the notebook, right underneath the code cell

•  jupyterlab: In a separate tab while/if running in JupyterLab 

You can also set your desired width and height if you wish to. Running the app takes 
additional optional parameters, as follows:

app.run_server(mode='inline', height=600, width='80%')

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_02
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_02
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_02
https://bit.ly/3tC0ZsW
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As you can see, setting the height and width can be done either by specifying an integer, 
that is, the number of pixels, or, for width, a percentage of the screen size as a string.

Still, there is another important benefit of running apps in a Jupyter Notebook 
environment, other than keeping the code and narrative in one place.

Isolating functionality for better management and 
debugging
When running and developing apps, you inevitably come across bugs and issues. In 
order to handle them, you need to isolate the cause and create the simplest reproducible 
example that causes the bug to happen. Only then can you properly troubleshoot the 
problem. And only then can you ask others for help. We won't wait for bugs to happen 
to isolate issues and figure them out. We will preemptively isolate all new features before 
incorporating them, so we can better handle and manage them.

From now on, introducing new features will be done by, first, creating them in an isolated 
environment, where we create a minimal app containing only this functionality. Once we 
are comfortable that we understand how it works, and that it functions as expected, we 
will keep a copy for reference, and see how to incorporate it into the existing app. This 
will also help us if we want to make changes to that specific functionality in the future, in 
which case we go through the same process again.

Let's start with our first example, which will be a drop-down menu with three values. The 
user selects one, and right underneath it, they see a message showing the value they chose. 
Figure 2.1 shows an example of what this might look like in its simplest form:

Figure 2.1 – The user's selection is displayed based on the value selected
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The following code will create this, except for the function that shows the user's selection: 

1. Import the required packages with their aliases:

from jupyter_dash import JupyterDash

import dash_core_components as dcc

import dash_html_components as html

2. Instantiate the app:

app = JupyterDash(__name__)

3. Create the layout of the app. We will now introduce a new component, the Dash 
Core Components Dropdown. This will be covered in much more detail later. 
However, for now, we will primarily use its options attribute to set the options 
that the user can select from. This parameter is set by using a list of dictionaries, 
one for each option, where label is what the user will see, and value is the actual 
value that we will be dealing with:

app.layout = html.Div([

    dcc.Dropdown(options=[{'label': color, 'value':

color}

                      for color in ['blue', 'green',

'yellow']]),

    html.Div()

])

4. Run the app as usual, with the minor change of running this in the inline mode 
for easier interactive work in JupyterLab:

if __name__ == '__main__':

    app.run_server(mode='inline')

Figure 2.2 shows an example of what this would look like in a notebook environment:
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Figure 2.2 – The Dash app running in JupyterLab

I'm sure you have noticed the empty html.Div file that was added right underneath 
the drop-down list. Let's examine how that fits into the structure of the app and how to 
implement the remaining functionality. We will now look at how to create the function 
that will link the dropdown to the empty div tag.

Creating a standalone pure Python function
This function is what we will be using to take the selected value from the dropdown, 
process it somehow, and use its return value to do something that is visible to the user.

The function is so simple that it doesn't require much explanation:

def display_selected_color(color):

    if color is None:

        color = 'nothing'

    return 'You selected ' + color

If the user doesn't input anything (or deselects the current option), then the color 
variable is set to 'nothing', and the function returns 'You selected ' + 
<color>, with whatever value color takes. Later in the chapter, we will create a more 
involved function to get some information on countries.
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A function is essentially a procedure. It takes in one or more arguments (inputs), does 
something to them, and returns one or more outputs. So, for this function, what will 
Input be, and what happens to its Output? You decide by selecting from the available 
components from the layout.

For this function, the dropdown will provide Input. Then, after processing it, the return 
value of the function, that is, its Output, will influence what to display in the currently 
empty html.Div right underneath the dropdown. Building on the diagram in Figure 
2.1, Figure 2.3 shows what we are trying to achieve. We will build a way to connect the 
dropdown (Input) to the div that shows the text (Output) by using the function we just 
defined as an intermediary:

Figure 2.3 – Input, Output, and a standalone function

In order for it to work in the context of this app, the function needs to know what its 
inputs and outputs are.

Let's now look at how to identify components by setting their id values. After that, we will 
learn how to declare a component as Input or Output.

The id parameter of Dash components
As briefly mentioned in Chapter 1, Overview of the Dash Ecosystem, every Dash 
component has an id parameter that you can easily set in order to uniquely identify it. 
There is actually nothing more to this parameter than making sure that your components 
have unique and descriptive names.

Note
There are more advanced ways of using the id parameter, and they will be 
tackled in a later, more advanced chapter. However, for now, we will just focus 
on it being a unique identifier.
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Using descriptive and explicit names for the id parameter becomes more important as the 
app grows in complexity. This parameter is optional when there is no interactivity, but it 
becomes mandatory when there is. The following example snippet shows how easy it is to 
set the id parameter for a basic use case:

html.Div([

    html.Div(id='empty_space'),

    html.H2(id='h2_text'),

    dcc.Slider(id='slider'),

])

Applying this to our current isolated app, we set a descriptive name to each id parameter:

app.layout = html.Div([

    dcc.Dropdown(id='color_dropdown',

                 options=[{'label': color, 'value': color}

                         for color in ['blue', 'green',

'yellow']]),

    html.Div(id='color_output')

])

Our app is now complete from a layout perspective, exactly as we did in Chapter 1, 
Overview of the Dash Ecosystem. The difference here is that we set values for the id 
parameter, and we are running it in a Jupyter Notebook environment. Once we can 
identify components using their id parameter, we can determine which become Input 
and which become Output. By updating our conceptual diagram with the ID values that 
we set, we can view the labels, as shown in Figure 2.4:

Figure 2.4 – Visible app elements are given names (IDs)
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Having given our components descriptive names, we are now ready to use them beyond 
simply displaying them.

Dash inputs and outputs
The next step is to determine which component is going to become an input (to our pure 
Python function) and which component will get the return value of the function (as an 
output) to be displayed to the user.

Determining your inputs and outputs
The dash.dependencies module has several classes, two of which we will be using 
here: Output and Input.

These classes can be imported by adding the following line to the imports section of  
our app:

from dash.dependencies import Output, Input

Let's quickly recap what we did earlier before adding the final element that will make this 
functionality work:

1. We instantiated an app in the Jupyter Notebook environment.

2. We created a dropdown containing three colors.

3. We created a regular function that returns a string, together with the value  
provided to it: 'Your selected'  + <color>.

4. The components were identified with descriptive names through their  
id parameters.

5. Input and Output were imported from dash.dependencies.

We will now define our callback function.
Callback functions are decorators, and in the most basic use case, they require three things:

1. Output: The page element that will be changed as a result of running the function. 
Dash gives us the flexibility to also determine which property of the component 
we want to modify. In our case, we want to modify the children property of the 
empty div. In this case, it can be specified like this: 

Output(component_id='color_output',

component_property='children')
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2. Input: Using the same logic, we need to specify which property of which 
component will serve as our input to the callback function. In our case, this would 
be the value property: 

Input(component_id='color_dropdown',

component_property='value')

3. A normal Python function: Any function can be used, but obviously, it needs to 
make sense in the context of the Input and Output that we have chosen.

Figure 2.5 shows an updated view of how things are coming together:

Figure 2.5 – Visible app elements connected through certain properties

Tip
The distinction between the frontend and the backend in Dash is massively 
simplified for us. They both exist in the same module, and we don't need to 
worry about many of the conventional details. For now, anything in app.
layout can be considered the frontend, and any callback functions that we 
define outside it can be collectively thought of as the backend.
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Specifying your callback function
The general format to specify a callback function is to define it as an attribute of the app 
variable, using the Python classes' dot notation, and then set the output and input, as 
shown here:

@app.callback(Output(component_id, component_property)

              Input(component_id, component_property))

Now that we have created a callback as an attribute of our app and determined which 
components' IDs and properties we want to influence each other, we bring our Python 
function and simply place it underneath the callback:

@app.callback(Output(component_id, component_property)

              Input(component_id, component_property)

def regular_function(input):

    output = do_something_with(input)

    return output

Now our callback is complete and ready to be incorporated into our app.

Implementing the callback
Let's take this abstract structure and implement it using the details of our standalone app:

@app.callback(Output('color_output', 'children'),

              Input('color_dropdown', 'value')

def display_selected_color(color):

    if color is None:

        color = 'nothing'

    return 'You selected ' + color

Please keep in mind that the order is important. Output has to be provided before Input.

Now we have a complete callback function that belongs to our app. It knows which 
property of which Output it will modify, as well as which property of which Input 
it will be using for this. It then uses the display_selected_color function for 
processing, taking the output value and sending it to the component where id='color_
output'. This will, in turn, modify the specified property (children).

For running it in JupyterLab, you can see the full code in Figure 2.6, as well as several 
possible outputs based on the selected value:
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Figure 2.6 – An interactive Dash app in a Jupyter Notebook

I also introduced a simple new component, html.Br, which simply provides a regular 
HTML <br> element, for better readability of the output.

With this, we have completed our first isolated and interactive app. We ran it in 
JupyterLab, and we did so step by step, analyzing every tiny detail. The app that we have 
just built uses a toy dataset and implements extremely simple functionality. We did this 
so that we could focus on the mechanism that creates interactivity. There's not much 
practical value in telling the user what color they know they just selected.

With this knowledge, we will now add functionality to answer a real question for the user – a 
question that might be tedious to answer if they were to skim through the whole dataset.

We will also incorporate this new feature into our app and examine how it fits with the 
other content and functionality that we created already.
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Incorporating the function into the app
Here is the plan for the functionality that we are going to introduce:

1. Create a drop-down list using the countries and regions available in our dataset.

2. Create a callback function that takes the selected country, filters the dataset, and 
finds the population of that country in the year 2010.

3. Return a small report about the found data. Figure 2.7 shows the desired end result:

 

Figure 2.7 – A drop-down list used to display the selected country's population

Important note
Now that we are beginning to use our dataset, we will start opening files from 
the data folder. This assumes that the app you are running is in the same 
folder. The code for each chapter in the GitHub repository is placed in its own 
folder for easy access; however, the code only works if the data folder and 
app.py are both in the same folder.

Figure 2.8 shows what this folder structure might look like:

Figure 2.8 – The assumed folder structure for the app

As agreed, we will run a minimal app in JupyterLab, make sure it is running properly, keep 
a copy, and then add it to the app.

We first need to take a look at the dataset, explore it a little bit, and learn how to 
implement the new functionality.
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To view what files we have in the dataset, we can run the following code:

import os

os.listdir('data')

['PovStatsSeries.csv',

 'PovStatsCountry.csv',

 'PovStatsCountry-Series.csv',

 'PovStatsData.csv',

 'PovStatsFootNote.csv']

Feel free to check out the files and their contents if you wish to. For now, we will be 
working with the PovStatsData.csv file. For a quick overview of its structure, we can 
run the following:

import pandas as pd

poverty_data = pd.read_csv('data/PovStatsData.csv')

poverty_data.head(3)

Running this code snippet in JupyterLab displays the first three rows of the dataset,  
as follows:

Figure 2.9 – The first few rows and columns of the poverty dataset
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It seems that we have two fixed variable columns (Country Name and Indicator Name). 
Measured variables in the form of numeric data (or missing NaN) values are available 
under their respective year column. Here, the years span from 1974 to 2019 (note that not 
all of the years are shown for better readability). The countries and indicators also have 
codes, which can be useful later when we want to merge different DataFrames.

Tip
Fixed variables refers to variables that are known in advance and don't change; 
in this case, they are the countries and the indicators. The measured variables 
are the values that we are interested in knowing, for example, the population 
of country A in year B. Fixed variables are also known as "dimensions." 
Technically, they are all columns in the dataset, and this is a conceptual 
distinction that is useful for analysis.

In Chapter 4, Data Manipulation and Preparation -  Paving the Way to Plotly Express, we 
will explore data formats and how they might affect our analysis and visualization. The 
current structure can be improved by having a column for "year," and another column for 
"values," which makes it standardized and more intuitive for analysis. For now, since we 
are focusing on callback functions, we will keep the data format as it is so that we don't  
get distracted.

Let's now implement the plan with code:

1. First, let's create a drop-down list. Here, we use the pandas Series.unique 
method to deduplicate countries and regions. Right underneath that, we create an 
empty div with id='report':

dcc.Dropdown(id='country',

             options=[{'label': country, 'value': 
country}

                      for country in

                      poverty_data['Country Name'].
unique()])

html.Div(id='report')

2. Next, we create a callback function that takes the selected country, filters the  
dataset, and finds the population of that country in the year 2010. The filtering  
will take two steps.
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Check whether no country has been provided to the function, which happens 
when the user first accesses the page or when the user deselects values from the 
dropdown. Here, we simply return the empty string:

if country is None:

    return ''

Now, let's focus on the filtering part. First, we take the selected country and filter 
the poverty_data DataFrame to get the population value. We then define the 
filtered_df variable. This takes the selected country and gives the rows where 
the Country Name column is equal to the selected country, and the Indicator 
Name column is equal to Population, total. After that, we create the population 
variable. We do this by using the pandas loc method, where we take all of the : 
rows and the column name 2010. We then extract the values attribute and get the 
number at index zero:

filtered_df = countrydata[(countrydata['Country

Name']==country) & (countrydata['Indicator

Name']=='Population, total')]

population = filtered_df.loc[:, '2010'].values[0]

3. Finally, let's return a small report about the data that has been found. Now that we 
have the population number that we are interested in, we return a list that contains 
two elements. The first is an <h3> element, showing the country variable using 
a large font. The second is a sentence that takes two dynamic values, which are 
inserted where they belong, as you can see in the following code snippet:

return [

    html.H3(country),

    f'The population of {country} in 2010 was

{population:,.0f}.'

]

Note that since we already have a div element in the layout, and we have indicated that 
we are modifying its children property (which takes a single value or a list), the return 
value of the function can simply be a list (or a single value).
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I have formatted the population value in the report to make it easier to read. The colon 
indicates that the following string is how we want to format it. The comma indicates that 
we want thousands to be separated by a comma. The dot indicates how to format decimal 
places. A zero after the dot indicates the number of decimal places, and the f indicates 
that we are dealing with floats.

Now, we are ready to refactor our code to include the new visual elements, as well as the 
new functionality. 

Picking up where we left off in the last version of our app in Chapter 1, Overview of the Dash 
Ecosystem, the dropdown and report div should go between the H2 and Tabs components:

…

html.H2('The World Bank'),

dcc.Dropdown(id='country',

             options=[{'label': country, 'value': country}

                      for country in poverty_data['Country

Name'].unique()]),

html.Br(),

html.Div(id='report'),

dbc.Tabs([

   dbc.Tab([

…

The callback function should come after the closing parentheses of the top-level html.
Div of the app. Here is the full code of the function:

@app.callback(Output('report', 'children'),

              Input('country', 'value'))

def display_country_report(country):

    if country is None:

        return ''

    filtered_df = poverty_data[(poverty_data['Country

Name']==country) &

                               (poverty_data['Indicator

Name']=='Population, total')]

    population = filtered_df.loc[:, '2010'].values[0]
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    return [html.H3(country),

            f'The population of {country} in 2010 was

{population:,.0f}.']

By running the app again, you should get this updated view:

Figure 2.10 – The updated app with the dropdown and simple population report

Tip
The app.run_server method takes an optional port argument, which 
defaults to 8050, as you can see in the URL in Figure 2.10. While developing 
apps, you might want to run two or more apps side by side. The way to do that 
is to simply run the second app on a different port, for example, app.run_
server(port=1234). This also applies to jupyter_dash.
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Now that we have our callbacks enabled and working, we can finally start using that blue 
button in the bottom-right corner! Clicking on it and then selecting Callbacks shows an 
interactive diagram displaying the components exactly as we specified them. The country 
and its value, and the report and its children. Figure 2.11 shows this:

Figure 2.11 – The Dash visual debugger in action

The Server button is green, which means it's running fine. We also see that we have "0 
Errors." When you have this debugger opened in a running app, and while modifying the 
components, you can also see the path of the callbacks and what is triggering what. The 
components that are involved in triggering a callback light up, so you can "see" what is 
going on. This becomes much more useful in complex situations. The nodes of the graph 
are also interactive, and you can move them around by increasing/decreasing the size of 
the overall graph so that you can zoom in and out wherever you want. And yes, this graph 
is a Dash app, using another one of Dash's packages.
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The green rectangle in the middle shows two interesting numbers. The one on top, 
showing 1, tells us how many times this callback has been fired so far. The one at the 
bottom shows how long it took to run this callback function. This is very helpful in 
tracking and analyzing performance.

So far, we have used a single-value input (not a list, for example) to modify an output. But 
what if we wanted to get multiple values and do something with them? What if we wanted 
to process values from multiple sources, for example, drop-down values and a date? All 
this and more is possible with Dash's callback functions. Did I mention that they were the 
heart of Dash?

I believe we've done enough coding in this chapter, and I think it's a good idea to have an 
overview of what lies ahead in terms of the power of callback functions, what they can do, 
and some of their interesting attributes. These are just things to keep in mind and know for 
now; we will be exploring how each feature works as we progress through the later chapters.

Properties of Dash's callback functions
Let's recap the properties of Dash's callback function and introduce a few others that will 
be explored in more detail later on:

• Multiple inputs: As I just mentioned, we can give callbacks to more than one 
input, and create more complex functionality. Using our dataset as an example, we 
can easily imagine a dropdown to select countries, another to select dates, and yet 
another to specify the economic indicator that you want to analyze. Those inputs 
could be used to filter a subset of the DataFrame and return the values that you 
want, based on multiple criteria. 

• Inputs can be lists (effectively multiple values from a single Input): The country 
selector can be made to accept multiple values, so we can loop over them and 
visualize the same trend for the same indicator for multiple countries in one chart 
(or a chart per country).

• Multiple outputs: As with multiple inputs, multiple outputs can be modified  
using one callback function. In our example, we might imagine producing two 
outputs – one that is a chart visualizing the filtered data and another that is a  
table – providing the user with the raw data if they want to export and further 
analyze this particular subset.
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• They can do other things before returning: We have mainly focused on callbacks 
being simple processors of data, but they can really do anything before returning. 
For example, you can imagine a function sending an email under certain conditions. 
Logging is another interesting thing to explore. All you have to do is simply log the 
arguments given to each function. This can give you insights into what people are 
interested in, which functionality is being used, and more. You can even parse those 
logs and develop your own separate analytics app based on that!

• Order matters: Outputs have to come before inputs. Additionally, the order of 
inputs corresponds to the parameters and their order of the callback function. For 
example, take a look at the following:

@app.callback(Output('div_1', 'children'), 

              Input('dropdown', 'value'),

Input('date', 'value)

def my_function(dropdown, date):

    output = process(dropdown, date)

    return output

Here, the first given Input in the decorator should correspond to the first 
parameter of my_function. I used the same names in the preceding snippet to 
make it explicit and clear (dropdown and date). The same applies to outputs.

• State: Another optional parameter for callbacks is State. In the examples we have 
discussed so far, the callbacks immediately fire when the values change. Sometimes, 
you don't want that. For example, if you have multiple inputs, it might be annoying 
for the user to have the outputs change while they are configuring their options. 
Imagine having a textbox that modifies another element on the page. Every letter 
the user enters would modify it, which is not the best user experience. The typical 
scenario for using State is to have buttons. The user selects or enters values, and 
once they are ready, they can click on a button, which only then triggers the  
callback function.
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Figure 2.12 presents a conceptual diagram of a more complex callback function and what 
it might look like: 

Figure 2.12 – A callback function handling multiple inputs and outputs, as well as running other tasks

We have now created and run two callback functions in two different contexts. We also 
incorporated one of them and built on the work we did in Chapter 1, Overview of the 
Dash Ecosystem. With a few more examples, you will have mastered callback functions. 
The next skills you need to conquer are managing complexity and being comfortable with 
refactoring code while keeping things organized and under control.

Let's quickly recap what we learned in this chapter.
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Summary
First, we introduced a new way to run Dash apps, which is by running them in a Jupyter 
Notebook environment. We saw how familiar the process is, and we created our first 
interactive app in a notebook. We went through every detail in the process from creating 
layout components, giving them IDs, and selecting which of their properties will be 
used, to connecting all of this with the callback function. We ran another example and 
familiarized ourselves with our dataset. Most importantly, we learned how to incorporate 
the new work into the app, and we ran an updated version that produced simple 
population reports. Congratulations! 

In the next chapter, we will take a deep dive into Plotly's data visualization capabilities. We 
will mainly focus on the Figure object, its components, how to query them, and how to 
modify them. This will give us fine-grained control over the visualizations that we will make. 



3
Working with 

Plotly's Figure 
Objects

Imagine that you have published an article that contains a chart. Assume that your readers 
will, on average, spend 1 minute looking at the chart. If your chart is easy to understand, 
then they will probably spend 10 seconds understanding it and 50 seconds thinking, 
analyzing, and pondering its implications. On the other hand, if the chart is difficult to 
understand, they will spend 50 seconds "reading" it, and very little time thinking about  
its implications.

This chapter aims to equip you with tools that will help you to minimize the time an 
audience spends understanding your charts, and to maximize their analysis and thinking 
time. The two previous chapters were about structuring apps and making them interactive. 
In this chapter, we will discuss how to create and control the very charts around which 
your apps are built. Plotly's Figure object is what we will primarily explore. In this chapter, 
we will cover the following main topics: 

• Understanding the Figure object

• Getting to know the data attribute

• Getting to know the layout attribute
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• Learning about figure traces and how to add them

• Exploring the different ways of converting figures

Technical requirements
We will focus on using the Figure object from the graph_objects module of the 
plotly package. Later in the chapter, we will utilize the other packages that we have been 
using to improve our app and add an interactive chart to it. As a reminder, the packages 
that we will use are Dash, Dash HTML Components, Dash Core Components, Dash 
Bootstrap Components, JupyterLab, Jupyter Dash, and pandas.

The packages can be individually installed by running pip install <package-name>, 
but it would be better to install the exact same versions that we use here, to reproduce 
the same results. You can install them all by running one command, pip install 
–r requirements.txt, from the root folder of the repository. The latest version 
of the poverty dataset can be downloaded from this link: https://datacatalog.
worldbank.org/dataset/poverty-and-equity-database. However, as with 
the packages, if you want to reproduce the same results, you can access the dataset from 
the data folder in the root of the Git repository, along with the rest of the code for this 
chapter can be found on GitHub at https://github.com/PacktPublishing/
Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/
master/chapter_03.

Check out the following video to see the Code in Action at https://bit.ly/3x9VhAA.

Understanding the Figure object
Plotly is a fully fledged data visualization system, which ships with more than 50 types of 
charts out of the box (for example, bar charts, scatter plots, and histograms). It supports 
2D and 3D visualizations, ternary plots, maps, and more. The available options for 
customizing almost any aspect of your charts are very detailed and can be overwhelming. 
This, as they say, is a good problem to have!

We use charts to uncover certain characteristics of our data or the relationships between 
different datasets. However, pure data visualization would be meaningless if we didn't 
know what is being visualized. Imagine a rectangle that has a bunch of dots on it with 
clear patterns. It would still be meaningless if you didn't know what the x axis represented, 
for example. If you have different shapes and colors in a plot, then they would mean 
nothing without a legend. Usually, titles and annotations are also needed to give us  
context around the data we are trying to understand.

https://datacatalog.worldbank.org/dataset/poverty-and-equity-database
https://datacatalog.worldbank.org/dataset/poverty-and-equity-database
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_03
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_03
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_03
https://bit.ly/3x9VhAA
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Those two groups, data and other supporting elements, which are collectively called 
layout, are two top-level attributes of Plotly's Figure object. Each attribute has several 
subattributes, at multiple levels, forming a tree-like structure. There is also the frames 
attribute, which is mainly used with animations, and it is not as common as the other two 
that are always present in every chart. We will not cover it in this chapter.

Let's now explore these attributes and start plotting to get a better understanding of how 
they fit together within the Figure object:

• data: The different attributes of data, and the relationships between them, are 
expressed using graphical/geometrical shapes, for example, circles, rectangles, 
lines, and more. The graphical attributes of those shapes are used to express various 
attributes of the data. The relative size, length, and distance between those shapes 
are how we understand this. Due to their visual and, therefore, intuitive nature, 
those attributes are easy to understand and don't require much explanation. The 
data attribute corresponds to the essence of what we are trying to understand.  
The values you need to provide for the data attribute depend on the chart type. 
For a scatter plot, for example, you need to provide x and y values. For maps, you 
need to have lat and lon. You can overlay several sets of data on top of each other 
on the same chart; each one is referred to as a trace. Each chart type can take many 
other optional values, and many of them will be covered in more detail later on in 
the book.

• layout: Everything else around the data belongs to this attribute. Elements of the 
layout attribute are more abstract in nature. They typically use text to inform 
the user what they are looking at. Many of them are also styling elements, which 
might not add as much information, but they make the charts easier to understand 
or conform to certain branding guidelines. There are many attributes that we will 
explore, but the most prominent ones are the title, axis titles, ticks, and legend. 
These, in turn, have subattributes, such as the font size, location, and more.
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It's much easier to learn by doing, and we can now start by creating our first figure.  
The graph_objects module is usually imported as go, and we instantiate a figure  
by calling go.Figure! Figure 3.1 shows an empty Figure object and how it is created  
and displayed:

Figure 3.1 – The default empty Figure object displayed in JupyterLab

Of course, we don't get anything from this empty figure, but it is the first step before 
adding the elements we want to it. Although we can create and display Figure objects 
by defining everything in the go.Figure call, we will use a slightly easier and more 
convenient approach. We will assign the created object to a variable, and then iteratively 
add and/or modify the elements that we want. An important benefit of this approach is 
that we can make changes to our charts after creating them.

Important note
Once you assign a Figure object to a variable, this variable becomes available 
in the global scope. Since it is mutable, you can make changes to it in other 
places in your code. Displaying the figure after making such changes will show 
it with the changes you have made. We will be utilizing this important feature 
in order to manage our charts.
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Having created the basic object, we are now ready to start adding our first data traces  
to our first chart.

Getting to know the data attribute
First, we start by adding a scatter plot using a very small and simple dataset. Later in 
the chapter, we will use our poverty dataset to create other plots. Once you have created 
your Figure object and assigned it to a variable, you have access to a large number of 
convenient methods for manipulating that object. The methods related to adding data 
traces all start with add_, followed by the type of chart we are adding, for example,  
add_scatter or add_bar.

Let's go through the full process of creating a scatter plot:

1. Import the graph_objects module:

import plotly.graph_objects as go

2. Create an instance of a Figure object and assign it to a variable:

fig = go.Figure()

3. Add a scatter trace. The minimum parameters required for this type of chart are two 
arrays for the x and y values. These can be provided as lists, tuples, NumPy arrays, 
or pandas Series:

fig.add_scatter(x=[1, 2, 3], y=[4, 2, 3])

4. Display the resulting figure. You can simply have the variable on the last line in your 
code cell, and it will also be displayed in JupyterLab once you run it. You can also 
explicitly call the show method, which gives you a few more options to customize 
the display of the figure:

fig.show()
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You can see the full code, as well as the final output, in Figure 3.2:

Figure 3.2 – A scatter plot displayed in JupyterLab

We will now add another similar scatter plot, overlaid on top of this one. We simply repeat 
step 3, but with different values:

fig.add_scatter(x=[1, 2, 3, 4], y=[4, 5, 2, 3])

This will add the new scatter plot to the same figure. If we call fig.show() after running 
this code, we will be able to see the updated figure. Note that this trace has four data 
points, whereas the previous trace had three. We don't need to worry about this, as this 
is handled for us using certain default values. We also have the option to modify those 
default values if we need to.
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If we want to modify any aspect of our data trace, we can do it through the 
add_<chart_type> method. The call to those methods provides a lot of options 
through many parameters, and they are specific to the type of chart you are producing. 
Part 2 of this book will go deeper into several chart types and the different options that 
they provide. On the other hand, if we want to modify anything related to the layout 
attribute, we can do so by accessing and then assigning the attributes and/or subattributes 
that we want in a simple, declarative way. This is generally done using Python's dot 
notation, for example, figure.attribute.sub_attribute = value. This 
guideline is not entirely correct, as there are a few exceptions, and in some cases, there 
is an overlap where an attribute belongs to the data attribute but is managed by the 
layout attribute, for example. In most cases, this is a helpful distinction to keep in mind.

Let's now take a look at some of the things that we can change in our figure's layout.

Getting to know the layout attribute
For the current figure that we are working on, let's add a title (for the whole figure), along 
with axis titles, to see how it works: 

fig.layout.title = 'The Figure Title'

fig.layout.xaxis.title = 'The X-axis title'

fig.layout.yaxis.title = 'The Y-axis title'

As you can see, we are exploring the tree-like structure of our figure. There is a title 
attribute that falls directly under fig.layout, and there are also titles for fig.layout.
xaxis and fig.layout.yaxis. To give you a sense of how detailed the available 
options are, Figure 3.3 shows some of the xaxis attributes that start with tick only:

Figure 3.3 – Some of the Figure object's layout.xaxis options
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Let's now look at the effect of the four lines of code we just added:

Figure 3.4 – The updated figure containing two traces, a legend, and titles

The three titles we have added are self-explanatory. New traces take on new default 
colors to differentiate them. Another interesting thing is the legend, which was added 
automatically. When you just have one trace, there is usually no need for a legend, but 
it becomes important when you have more than one. Descriptive names are crucial, of 
course, and trace 0 doesn't mean much, but I'm keeping it as a memory aid to remember 
the names of the figure elements.

The figure we just created and displayed is what your users will see. Let's now take an 
interactive peek at the components of this figure.
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Interactively exploring the Figure object
As I mentioned earlier, the show method provides a few handy options for customizing 
what and how your figures are displayed. A particularly helpful one is setting the 
renderer parameter to JSON. Figure 3.5 shows how this can be useful:

Figure 3.5 – Interactively exploring the Figure object in JupyterLab

In the top-left corner, you can see the default view. The root represents the Figure object, 
and the two top-level attributes can be seen right under it. We also get a hint that our data 
attribute contains two items (these are the two traces we added). The triangles and their 
directions indicate whether the respective attribute has been expanded or collapsed.

In the bottom-left corner, you can see the search functionality in action. This is useful for 
when you want to access or modify a certain attribute but are not entirely sure what its 
exact name is, or to what attribute it belongs. On the right-hand side, I have expanded a 
few of the items, and you can see that they correspond to the figure we created.

Important note
This chapter, and the whole book really, is about how to create the charts and 
dashboards that you want. It's not about data visualization's best practices or 
statistical inference. In other words, it's about how to create the things you 
want to create, and not about what you should create. I'll still try to share good 
practices, and hopefully, make reasonable choices for the charts and their 
details, but it's important to keep this distinction in mind.
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I'm sure you have noticed the "mode bar" containing interactive buttons and controls in 
the top-right corner of the figures we created. There are several ways to control which 
buttons to show or hide and a few other options. This is available through the config 
parameter of the show method.

Configuration options for the Figure object
The config parameter takes a dictionary and controls several interesting options. The 
keys control which aspect to modify. Additionally, the values can be given as strings or 
lists, depending on which one you are modifying. For example, consider the following 
code snippet: 

fig.show(config={'displaylogo': False,

                 'modeBarButtonsToAdd': ['drawrect',

                                         'drawcircle',

                                         'eraseshape']})

Here are some of the most important ones:

• displayModeBar: This defaults to True. It controls whether or not to display the 
whole mode bar.

• responsive: This defaults to True. It controls whether or not to change the 
dimensions of the figure based on the browser window's size. Sometimes, you  
might want to keep the figure dimensions fixed.

• toImageButtonOptions: The camera icon in the mode bar allows users to 
download the figure as an image. This option controls the default formats of 
downloading those images. It takes a dictionary in which you can set the default 
format (that is, SVG, PNG, JPG, or WebP). You can also set default values for the 
height, width, filename, and scale. 

• modeBarButtonsToRemove: This is a list of buttons you don't want in the  
mode bar.

Now that we have learned how to create, examine, and configure basic charts, let's explore 
what else we can do with them. How can we convert them into other formats? And what 
other formats are available?
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Exploring the different ways of converting 
figures
The methods that control converting figures start with either to_ or write_. Let's 
explore some of the most interesting ones.

Converting figures into HTML
Plotly figures are actually HTML objects, together with the JavaScript that makes them 
interactive. We can easily capture that HTML file if we want to share it with others via 
email, for example. You might consider having this as a feature in your dashboards. Your 
users can create the chart or report they want, convert it into HTML, download it, and 
share it with their colleagues.

All you have to do is provide a file path of where you want it to be saved. The method also 
takes several optional parameters for further customization. Let's convert our figure into 
HTML and add a config option to make it download the figure image in SVG format. 
The effect of this will be reflected in the HTML file when clicking on the camera icon. The 
code for this is straightforward:

fig.write_html('html_plot.html',

               config={'toImageButtonOptions':

                       {'format': 'svg'}})

We can now open the file in a browser as a separate HTML file, filling the whole browser 
screen, as shown in Figure 3.6:

Figure 3.6 – The Figure object is rendered as a separate HTML file in a browser window
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Converting figures into images
We have examined the option that allows users to manually download an image of the 
Figure object. There is another way of doing so programmatically, which can also be 
interesting. Just like the write_html method, we also have a write_image method. 
The format of the image can be explicitly provided or inferred from the file extension you 
provide. You can also set the height and width values.

This might be interesting for mass image creation. For example, you might want to create 
many plots, one for each country, and save each in a file for a separate report on each 
country. It would be very tedious to do this manually. You might also include this in one 
of your callbacks for your users. You could allow your users to assemble certain reports, 
and click on a button that converts them into images and then downloads them, for 
example. This can be run just like the HTML converter:

fig.write_image('path/to/image_file.svg',

                height=600, width=850)

With this information, we can now get practical and find out more about our dataset.

Plotting using a real dataset
In Chapter 2, Exploring the Structure of a Dash App, we created a simple report that 
showed the user the population of the selected country in the year 2010. This type of 
report is used when the user knows what they want. That is, they have a specific question 
about a specific country, metric, and period of time in mind, and our functionality 
provides an answer to their question.

We can think of dashboard functionality falling under two broad categories. The first, as 
we have done already, are visualizations or reports that answer a specific question. The 
second, which we will do now, guide the user in a more exploratory approach. In this case, 
users don't know much about a certain topic and they are looking for an overview.

Your users can go back and forth between those types of charts. For example, first, they 
explore poverty in the last decade. A certain region stands out. They then ask a specific 
question about that region. When they realize that that region had an unusually high rate 
of another metric, they can go on to another exploratory chart in that metric to learn 
more about it.
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Now, we will let the user select a year, and the app will display the top 20 countries by 
population for the selected year.

As a quick reminder, our poverty dataset contains columns for the countries and their 
codes, the indicators and their codes, and a column for each year from 1974 to 2019.

As agreed, let's first do this in an isolated environment in JupyterLab:

1. Import pandas, use it to open the poverty dataset, and assign it to the  
poverty_data variable:

import pandas as pd

poverty_data =

pd.read_csv('data/PovStats_csv/PovStatsData.csv')

2. Although the column of interest is called Country Name, it actually contains 
regions as well, which can be really useful, but not in this case. We can extract all the 
regions so that we can exclude them from the dataset. I manually copied the regions 
and created the regions list:

regions = ['East Asia & Pacific', 'Europe & Central

Asia',           'Fragile and conflict affected

situations', 'High income',

'IDA countries classified as fragile situations', 'IDA

total', 'Latin America & Caribbean', 'Low & middle

income', 'Low income', 'Lower middle income', 'Middle

East & North Africa', 'Middle income', 'South Asia',

'Sub-Saharan Africa', 'Upper middle income', 'World'] 

3. Create population_df, the subset DataFrame where the Country Name column 
is not in regions, and the Indicator Name column is equal to Population, total. 
The isin method for pandas Series checks whether values in the Series are in 
a certain list, and the ~ (tilde) is the logical negation operator:

population_df = poverty_data[~poverty_data['Country

Name'].isin(regions) & (poverty_data['Indicator

Name']== 'Population, total')]
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4. The first few rows of the resulting DataFrame can be displayed as follows:

population_df.head()

It looks similar to the following screenshot:

Figure 3.7 – The first few rows of population_df

5. Create a dynamic year variable, and create a year_df variable containing the 
countries column along with the selected year's column. Then, sort those values  
in descending order and extract the first 20:

year = '2010'

year_df = population_df[['Country Name',

year]].sort_values(year, ascending=False)[:20]

6. With a year_df variable containing two sorted columns, we can very easily create 
a bar chart just as we did with the scatter plots earlier. We can also add a dynamic 
title, containing the year, as a variable:

fig = go.Figure()

fig.add_bar(x=year_df['Country Name'],

y=year_df[year])

fig.layout.title = f'Top twenty countries by

population - {year}'

fig.show()

This results in the following output:
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Figure 3.8 – A bar chart showing the top 20 countries by population in 2010

As you can see, once we have a proper subset with the relevant columns sorted, we can 
produce the chart we want with a few lines of code. Additionally, note that the numbers on the 
y axis were formatted, by default, as billions (or fractions of billions) to make them easy to read.

We didn't set axis titles. Here, the figure title implicitly tells us about both axes: "countries" 
and "population." With a numeric y axis and the country names listed on the x axis, it 
should be clear to users.

2010 is an arbitrary year, and we actually want users to be able to select the year they want 
from the ones that are available in the dataset.

The code that produced the figure only requires a def statement and some indentation  
to become a function:

def plot_countries_by_population(year):

    year_df = …

    fig = go.Figure()

    …

    fig.show()    

This function produces a similar chart to the one that we just produced, but for the given 
year argument. You might think that it's as easy to convert this function into a callback 
function, just by adding a line of code. This is exactly what we will be doing, but first, I'd 
like to highlight an observation about data manipulation and preparation, and how it 
relates to data visualization because this example illustrates it very well.
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Data manipulation as an essential part of the data 
visualization process
The previous example contains six steps. The first five were for preparing the data and 
getting it in two arrays: one for countries and the other for population numbers. The sixth 
and final step alone was where we produced the chart. There was much more code for  
data preparation than there was for producing the figure.

If you consider the mental effort and time required to produce the chart (that is, the final 
step only), you can easily see that it is the same as the mental effort required to produce 
the scatter plot that we created at the beginning of the chapter, featuring the toy dataset. 
We simply ran add_scatter(x=[1, 2, 3], y=[4, 2, 3]), and then we did  
the same for the bar chart, only with different values.

However, if you consider the mental effort and time spent on preparing the data for the bar 
chart, you can clearly see that there is a huge difference, compared to the data preparation 
for the scatter plot. We needed to know that the Country Name column did not really  
refer to all countries. We had to explore and manually check that first to know this. We also 
had to extract the regions and exclude them. How did we know that "South Asia" was a 
region, while "South Africa" was a country? We had to know this beforehand, or we had  
to know how to get a list of countries to check against. Additionally, we had to know that 
the year columns were strings and not integers. I discovered that when I got KeyError 
after trying to access the data for a certain year. We typically spend more time and effort  
on these things, and once the data is in a suitable format, we can easily visualize it.

In Chapter 4, Data Manipulation and Preparation - Paving the Way to Plotly Express, we 
will spend more time on this topic, and introduce some important techniques that might 
be useful in a variety of situations. However, keep in mind that your skills in manipulating 
data, reshaping it, merging datasets, regular expressions, and all the tedious parts of data 
preparation form a big part of where your contribution lies. It's where most opportunities 
are, and a lot of it is based on your judgment. Domain knowledge is also essential; for 
instance, knowing the difference between regions and countries. Once you have data 
in a certain format, there are numerous advanced techniques and algorithms that you 
can use to visualize, analyze, and run various machine learning pipelines that require 
comparatively little code.

Now, let's use our newly created function and learn how to make it interactive with  
a Dropdown component and a callback function.
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Making the chart interactive with a callback function
First, we will do this as a completely isolated app in JupyterLab, after which we will  
add it to our app. In the isolated environment, our app.layout attribute will contain 
two components:

Dropdown: This will display all the available years so that the user can select the one  
they want. 

Graph: This is a new component that we haven't covered yet, and we will be working 
extensively with it. Adding a Graph component to the layout displays an empty chart. If 
you remember our discussion about callback functions, when modifying a component in a 
callback function, we need to provide its component_id and component_property. 
The property that we will be modifying, in this scenario, is the figure property, and it only 
belongs to the Graph component.

You are now familiar with the imports and app instantiation, so I will mainly focus on the 
app.layout attribute of the app: 

app.layout = html.Div([

    dcc.Dropdown(id='year_dropdown',

                 value='2010',

                 options=[{'label': year, 'value':

str(year)}

                          for year in range(1974, 2019)]),

    dcc.Graph(id='population_chart'),

])

For now, there is nothing special about the Graph component. We simply create one 
underneath the Dropdown component and give it a descriptive id argument.

I'm sure you have also noticed that this time, we have slightly different values for the label 
and value keys in the list of options in the Dropdown component. The difference is 
that the value key is set to str(year). Since options is a list of dictionaries generated 
by a list comprehension, it will produce a list of integers. The selected number will be 
used to select the column with that value. In this dataset, the columns are all strings, so 
using population_df[2010] will not work, because there is really no such column 
(as an integer). The actual column name is 2010, as a string. So, we are specifying the label 
as an integer, but the actual value that will be used by the callback function is the string 
representation of that integer (the year).
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We have also added a new parameter that we haven't discussed yet. The value parameter 
of the Dropdown component serves as a default that will be shown to users the first time 
they see the app. This is better than showing an empty chart.

In some cases, you might want to do the opposite of what we did in this example. You 
might want to keep value as it is but modify label somehow. For example, if your data 
was all in lowercase, you might want to display the options as capitalized. In our colors 
example, in the previous chapter, we could have done something like this:

dcc.Dropdown(options=[{'label': color.title(), 'value':

color} for color in ['blue', 'green', 'yellow']])

From the callback function's perspective, the colors are still the same, because it 
mainly deals with the value attribute. But for the user, this would display the colors as 
capitalized: "Blue," "Green," and "Yellow."

Running the app with the two components defined so far produces the app, as shown  
in Figure 3.9:

Figure 3.9 – An app with a Dropdown component showing a default value and an empty graph
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We have already created a normal function that takes the data as a year and returns a 
bar chart showing the top 20 countries by population for that year. Converting it into a 
callback function requires one line of code:

@app.callback(Output('population_chart', 'figure'),

              Input('year_dropdown', 'value'))

def plot_countries_by_population(year):

    year_df = …

    fig = go.Figure()

    …

    return fig

In the previous function definition, the last line was fig.show(), and in the callback 
function, we return the figure instead. The reason is that, in the first case, we were 
running it interactively and there was no app or callback context. In this case, we have a 
component with the population_chart ID, and, most importantly, we want to change 
its figure property. Returning the figure will hand it to the Graph component and 
modify its figure attribute.

Running this app will produce dynamic charts based on the user selection, as you can see 
in Figure 3.10:

Figure 3.10 – An app displaying a bar chart based on the selected year
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If you compare this to Figure 3.8, you will notice that the country names are displayed 
vertically here, while, previously, they were displayed at a certain angle. This is simply 
because the chart was displayed in a wider browser window. This is another convenient 
default that Plotly handles for us without us having to do anything. This means that our 
figures are responsive, which gives them great flexibility. This is the same with the apps 
and their components that we style with Dash Bootstrap Components.

Now that we have created an isolated app that works independently, let's look at how  
to add this to our app.

Adding the new functionality to our app
So far, the latest version of the app contains a Dropdown component, and underneath 
that, the Div for the population report of 2010. Underneath that, we have the Tabs 
component. Let's now insert the new Dropdown and Graph components right 
underneath the report area, and above the Tabs component. Let's also add the new 
callback function:

1. Copy the two new components to where they belong in the app.layout attribute:

…

html.Br(),

html.Div(id='report'),

html.Br(),

dcc.Dropdown(id='year_dropdown',

             value='2010',

             options=[{'label': year, 'value':

str(year)}

                      for year in range(1974, 2019)]),

dcc.Graph(id='population_chart'),

dbc.Tabs([

…
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2. Copy the callback function definition and place it anywhere after the closing tag of 
the top-level Div of app.layout. You can place it under the previous callback 
function that we created for better organization, but it doesn't matter where you 
place it in terms of functionality:

@app.callback(Output('population_chart', 'figure'),

              Input('year_dropdown', 'value'))

def plot_countries_by_population(year):

    fig = go.Figure()

    year_df = population_df[['Country Name',

year]].sort_values(year, ascending=False)[:20]

    fig.add_bar(x=year_df['Country Name'],

                y=year_df[year])

    fig.layout.title = f'Top twenty countries by

population - {year}'

    return fig

3. Add the definition of the regions list and then population_df after the 
definition of poverty_data. The order is important because population_df 
depends on regions to be defined before it, and since it is a subset of poverty_
data, it also needs to be defined after it. This is the order in which these variables 
need to be defined:

poverty_data = … 

regions = …

population_df = …
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Now, if we run the app, you can see what it looks like in Figure 3.11:

Figure 3.11 – The app with the new components added (Dropdown and Graph).

If you open the debugger and click on the Callbacks button, you can also see an updated 
view of the available callbacks, along with the names of the components that they link to 
(the component IDs and the component properties). Figure 3.12 shows this:

Figure 3.12 – The app callbacks in the visual debugger
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Our app now displays more information. It allows users to get information interactively 
from the dataset. We defined two callback functions and have a layout that contains 
several components of different types. We also have about 90 lines of code in total. Simply 
adding new components by inserting them somewhere works fine until you have a large 
enough number of them in the app. Then, we will need to learn how to better organize  
the code and refactor it. 

Let's close this chapter with a fun, easy-to-use aspect of the Plotly Figure object, which 
does not require much coding, and then recap the topics covered.

Theming your figures
Theming your figures (as opposed to your apps) can be interesting and saves a lot of time 
if you need to change themes. This can be accessed and modified through the template 
attribute under layout:

fig.layout.template = template_name

Figure 3.13 shows four different templates and their names: 

Figure 3.13 – Four different Figure templates
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The full list of templates is available in plotly.io.templates.

This is helpful when you want your figures to have a template that is compatible with the 
app's theme. It is also a good starting point to enable you to select one of the templates 
and then modify a few of its elements as you see fit.

Let's now recap the topics that we have covered in this chapter.

Summary
We started by introducing the Figure object, its components, and subcomponents. 
We looked at how to create figures step by step, and how to modify various aspects of 
them. We also took an extensive look at the two main attributes of figures, the data and 
layout attributes. A few ways of converting figures were also explored, and we then 
created a chart based on our dataset and incorporated it into our app.

With the chapters you have read so far, you now know how to create and structure apps, 
how to make them interactive by creating callbacks that link various page components 
together, and how to build charts that fit into the whole system.

You now know how to build fully interactive apps, and with the understanding developed 
in this chapter, you also know how to manage the various aspects of your figures and 
make sure that they are easy to read, so your users can spend more time on analysis and 
less time on understanding the charts themselves.

We briefly observed the importance of data preparation and manipulation, and we are 
now ready to take a more extensive look at it. In the next chapter, we will introduce Plotly 
Express, a powerful and higher-level interface that is used to create charts concisely.



4
Data Manipulation 

and Preparation, 
Paving the Way to 

Plotly Express
We saw that preparing data can take much more mental effort and code than the process 
of creating charts. Or, to put it differently, if we invest a good amount of time in preparing 
our data and making certain decisions about how and what we intend to do with it, the 
process of visualization can be made much easier. So far, we have used a small part of our 
dataset and didn't make any changes to its shape or format. And when making our charts, 
we followed the approach of building them from scratch by creating a figure and then 
adding different layers and options for traces, titles, and so on.
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In this chapter, we will go through a thorough familiarization with the dataset and reshape 
it to an intuitive and easy-to-use format. This will help us in using a new approach for 
creating visualizations, using Plotly Express. Instead of starting with an empty rectangle 
and building layers on top of it, we will start with the features (columns) of our dataset, 
and create visualizations based on them. In other words, instead of being screen- or  
chart-oriented, we will work with more of a data-oriented approach. We will also compare 
the two approaches and discuss when to use them.

We will mainly cover the following topics:

• Understanding long format (tidy) data

• Understanding the role of data manipulation skills

• Learning Plotly Express

Technical requirements
Technically, no new packages will be used in this chapter, but as a major module of  
Plotly, we can consider Plotly Express to be a new one. We will also be extensively using 
pandas for data preparation, reshaping, and general manipulation. This will mainly be 
done in JupyterLab. Our dataset will consist of the files in the data folder in the root of 
the repository.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_04.

Check out the following video to see the Code in Action at https://bit.ly/3suvKi4.

Let's start by exploring the different formats in which we can have data, and what we can 
do about it.

Understanding long format (tidy) data
We have a moderately complex dataset that we will be working with. It consists of four 
CSV files, containing information on almost all the countries and regions in the world. We 
have more than 60 metrics spanning more than 40 years, which means that there are quite 
a lot of options and combinations to choose from.

But before going through the process of preparing our dataset, I'd like to demonstrate our 
end goal with a simple example, so you have an idea of where we are heading. It will also 
hopefully show why we are investing time in making those changes.

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_04
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_04
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_04
https://bit.ly/3suvKi4
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Plotly Express example chart
Plotly Express ships with a few datasets for practicing and testing certain features 
whenever you want to do so. They fall under the data module of plotly.express, 
and calling them as functions returns the respective dataset. Let's take a look at the 
famous Gapminder dataset:

import plotly.express as px

gapminder = px.data.gapminder()

gapminder

Running this code displays sample rows of the gapminder DataFrame as you can see  
in Figure 4.1:

Figure 4.1 – The Gapminder dataset included in Plotly Express
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The dataset structure seems straightforward. For each unique combination of country, 
continent, and year, we have three metrics: lifeExp, pop, and gdpPercap. The iso_alpha 
and iso_num columns seem to be encoded values for the countries.

Let's see how we might summarize the gapminder data_frame with a scatter plot.

On the x axis, we can have the gdpPercap values, and as a function of that, on the y axis, 
it would be good to see the lifeExp values and check whether/how they vary from each 
other. It would also be good to have the size of the markers reflect the population of the 
respective countries.

We might also split the chart horizontally (facet_col), into sub-plots, one for each 
continent, on one row, and make the sub-plot titles reflect that as well. We can also assign 
a separate color to each continent's markers. For more clarity, we can set the title of 
the figure to 'Life Expectancy and GDP per capita. 1952 – 2007'.

To make them clearer, we can change the labels of the X and Y axes' titles from 
'gdpPercap' to 'GDP per Capita', and from 'lifeExp' to 'Life 
Expectancy' respectively.

We would expect the GDP per capita to have outliers and not to be normally distributed, 
so we can set the type of the X-axis scale to logarithmic (log_x). The range of the Y-axis 
(range_y) should be the interval [20, 100], so we can see how life expectancy varies on a 
fixed vertical range.

Hovering over the markers should show the full information for that particular country, 
and the title of the hover label (hover_name) should take the name of the country. Having 
the same chart overlaid on top of itself for all years would be really cluttered and almost 
impossible to read. So let's have a separate animation_frame for each of the years.

It would be great if we could have a play button that would move the markers across years 
when clicked, one frame per year, like a video, with the option to stop it at a certain year.

The height of the figure should be 600 pixels: 

px.scatter(data_frame=gapminder,

           x='gdpPercap',

           y='lifeExp',

           size='pop',

           facet_col='continent',

           color='continent',

           title='Life Expectancy and GDP per capita. 1952 - 
2007',
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           labels={'gdpPercap': 'GDP per Capita',

                   'lifeExp': 'Life Expectancy'},

           log_x=True,

           range_y=[20, 100],

           hover_name='country',

           animation_frame='year',

           height=600,

           size_max=90)

Running the preceding code would produce the visualization in Figure 4.2:

Figure 4.2 – An interactive chart of the Gapminder dataset using Plotly Express

My first observation for this process is that it took us much more text than code to 
describe the chart. Actually, it was a single line of code that produced it.

Clicking the play button would animate the chart, and you would see a new frame for each 
year. You could also pause or move to a certain year if you want. This way you can see how 
the relationship between the two variables progressed through the years, like watching a 
short movie.

You can also see that hovering over a certain marker representing a country would show 
all relevant data that was used to specify the location, size, color, and whatever other 
attributes we might have set. The hover_name argument was set to 'country' and this 
is why you see it in bold as the title of the label.
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In most cases, we have markers overlapping, which makes it difficult to understand the 
chart. Because Plotly figures are interactive by default, we can easily use the modebar 
buttons to zoom in/out, or we can manually select a certain rectangle to zoom into.

Zooming into Africa by selecting the rectangle that contains only its markers, Figure 4.3 
shows how the chart changes, and now it is much easier to read the African sub-plot:

Figure 4.3 – Zooming into specific regions in charts

Note that all other continent charts were also zoomed in to the same zoom level of Africa. 
Feel free to explore more of the interactive features, but I hope this shows how powerful 
and intuitive this approach is.

Tip
There are many colored charts in this chapter. I did my best to make sure you 
can easily distinguish between colored markers as much as possible. It's still 
better to refer to the color version of the book, which is available online, if you 
are reading the print version.



Understanding long format (tidy) data     73

There are two main reasons that allowed us to create such a rich chart with one line of 
code. First, Plotly Express has powerful features and is specially designed to produce such 
charts with minimal code. This will be covered in more detail later. Second, the structure 
of the dataset plays an important role in the process. Once we have our data in a consistent 
format, it becomes easy to model, visualize, or run any kind of analysis.

Let's take a look at the main aspects of this data format.

Main attributes of long format (tidy) data
One of the key features of this structure is that it allows each marker on the chart to 
be independently represented by a row. Each value in those rows belongs to a distinct 
column. In turn, those columns each represent a separate variable and have their own data 
types. This makes it easy to map color, size, or whatever visual attributes we want, simply 
by declaring which column values we want to express with which visual attribute.

Notice that what I just said is close to the definition of a DataFrame:

• A set of columns, where each has exactly one type of data.

• Columns in a DataFrame can be of different types.

• All columns have the same length, even though they might contain missing values.

From a conceptual point of view, the main difference between a long form DataFrame and 
a regular one is having one observation per row (country, person, brand, or a combination 
of them), and one variable per column (population, size, length, height, revenue, 
and so on). For example, the country column contains countries and only countries. 
Additionally, countries are only present in this column. So, there is no ambiguity about 
where or how to access them.

This format is not required and is not any more "correct" than other formats. It is 
simply intuitive, consistent, and easy to use. The actual requirement for producing the 
visualization we just did is to have a set of values for the X axis and another set of values 
of the same length for the Y axis. For other features such as color and size, we also need 
sets of numbers or names of the same length, so we can properly map them together. The 
DataFrame is a natural fit for such a requirement.
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In the chart we just produced, you can easily see that we can have all markers the same 
size, simply by removing the size argument. Changing facet_col to facet_row 
would immediately have the sub-plots vertically stacked on top of one another as opposed 
to side by side. Minimal tweaks allow us to introduce big changes to our visualizations. 
This is as simple as flipping switches on a dashboard, pun intended!

I hope the end goal is now clear. We want to check the four files of our dataset and see 
how to generate long format (tidy) DataFrames. As a result, every column would contain 
data about one variable (year, population, Gini index, and so on), and every row would 
describe an observation (a combination of country, year, metric, and other values). Once 
that is done, we should be able to look at the data, specify what we want, and express that 
with a concise Plotly Express function call.

The process will be much clearer once we start the preparation, so let's start right away.

Understanding the role of data manipulation 
skills
In practical situations, we rarely have our data in the format that we want; we usually 
have different datasets that we want to merge, and often, we need to normalize and clean 
up the data. For these reasons, data manipulation and preparation will always play a big 
part in any data visualization process. So, we will be focusing on this in this chapter and 
throughout the book.

The plan for preparing our dataset is roughly the following:

1. Explore the different files one by one.

2. Check the available data and data types and explore how each can help us categorize 
and analyze the data.

3. Reshape the data where required.

4. Combine different DataFrames to add more ways to describe our data.

Let's go through these steps right away.

Exploring the data files
We start by reading in the files in the data folder:

import os

import pandas as pd

pd.options.display.max_columns = None
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os.listdir('data')

['PovStatsSeries.csv',

 'PovStatsCountry.csv',

 'PovStatsCountry-Series.csv',

 'PovStatsData.csv',

 'PovStatsFootNote.csv']

To make things clear, I'll use the distinct part of each filename as the variable name for 
each DataFrame: 'PovStats<name>.csv'.

The series file
We start by exploring the series file, using the following code:

series = pd.DataFrame('data/'PovStatsSeries.csv')

print(series.shape)

series.head()

This will display the shape attribute of the DataFrame, as well as the first five rows, as you 
can see in Figure 4.4:

Figure 4.4 – The first few rows and columns of the PovStatsSeries file
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It seems we have 64 different indicators, and for each one of them, we have 21 attributes, 
explanations, and notes. This is already in long format – columns contain data about one 
attribute, and rows are complete representations of an indicator, so there is nothing to 
change. We just need to explore what data is available and get familiar with this table.

Using this information, you can easily imagine creating a special dashboard for each 
indicator and placing it on a separate page. Each row seems to have enough information 
to produce an independent page with a title, description, details, and so on. The main 
content area of the page could be a visualization of that indicator, for all countries and 
across all years. This is just one idea.

Let's take a closer look at some interesting columns: 

series['Topic'].value_counts()

Poverty: Poverty rates           45

Poverty: Shared prosperity       10

Poverty: Income distribution      8

Health: Population: Structure     1

Name: Topic, dtype: int64

We can see that the indicators are spread across four topics, the counts of which can be 
seen above.

There is a column for Unit of measure, which might be interesting to explore:

series['Unit of measure'].value_counts(dropna=False)

%             39

NaN           22

2011 PPP $     3

Name: Unit of measure, dtype: int64

It seems we have indicators whose units of measure are either percentages (rates) or not 
available (NaN). This might help us later in grouping certain types of charts together.
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Another important column is the Limitations and exceptions column. Usually, this kind 
of metadata is extremely important, because it tells us about where the biases might be, 
or what we should keep in mind while exploring our data. You can read those limitations, 
and it might be interesting to count them and see whether they fall under certain groups, 
or whether they are duplicated. The following code groups the series DataFrame by the 
Topic column, and then summarizes the Limitations and Exceptions column values by 
their count and number of unique values:

(series

 .groupby('Topic')

 ['Limitations and exceptions']

 .agg(['count', pd.Series.nunique])

 .style.set_caption('Limitations and Exceptions'))

The output can be seen in Figure 4.5:

Figure 4.5 – Counts and unique values of Limitations and Exceptions

It looks like this is going to be a good reference point for us to learn more about the 
different indicators that we have. It would also be very helpful for the users so they can 
also get a better understanding of what they are analyzing.

The country file
Let's now take a look at the next file, 'PovStatsCountry.csv':

country =\

pd.read_csv('data/PovStatsCountry.csv',na_values='',

                      keep_default_na=False)

print(country.shape)

country.head()
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This will display the shape of the DataFrame as well as a sample of rows and columns, as 
in Figure 4.6: 

Figure 4.6 – Sample rows and columns from the country file

In the call to read_csv, we have specified keep_default_na=False and  
na_values=''. The reason is that pandas interprets strings such as NA and NaN as 
indicators of missing values. One of the countries, Namibia, has a 2-alpha code value of 
NA, so it was missing from the DataFrame. That's why we had to make this change. That's 
a very good example of how things might go wrong in unexpected ways.

This is very interesting metadata about the countries and regions in our dataset. It is a very 
small dataset but can be very useful in enriching our understanding, as well as giving us 
more options to filter and group our countries. It is also in long (tidy) format. Let's take a 
look at some of its interesting columns.

The Region column seems straightforward. We can check to see what regions are 
available, as well as the counts of countries in each region:

country['Region'].value_counts(dropna=False).to_frame().style.
background_gradient('cividis')
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The result can be seen in Figure 4.7:

Figure 4.7 – Counts of countries per region

Another column that might be helpful is Income Group. Once we have this properly 
mapped to the right values, we might consider splitting our sub-plots by income group, as 
we previously did with continents in the first example of this chapter:

country['Income Group'].value_counts(dropna=False)

Upper middle income    52

Lower middle income    47

High income            41

Low income             29

NaN                    15

Name: Income Group, dtype: int64

Having fifteen NaN values is consistent with the number of regions and classifications 
combined, which we will see shortly. The income level of countries is independent of their 
geographic locations.

If you look at the Short Name column, you will notice that not all entries are 
countries. There are geographic regions such as Middle East & North Africa, as well as 
classifications, for example, Lower middle income. I think it's important to distinguish 
between them, and we can easily create a special column for that, so we can differentiate 
between countries and non-countries.
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The Region column shows which region the entity in Short Name falls under. In the cases 
where it is a region, the value is missing. We can use this to make our distinction, and 
create an is_country Boolean column:

country['is_country'] = country['Region'].notna()

Figure 4.8 shows a sample of rows containing countries and regions, as well as 
classifications:

Figure 4.8 – A sample of countries and regions with the is_country column

The full listing of those categories can be found by getting a subset of the country 
DataFrame where the Region column contains missing values and then getting the  
Short Name column:

country[country['Region'].isna()]['Short Name']

37     IDA countries classified as fragile situations

42                                East Asia & Pacific

43                              Europe & Central Asia

50           Fragile and conflict affected situations

70                                          IDA total

92                          Latin America & Caribbean

93                                         Low income

95                                Lower middle income
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96                                Low & middle income

105                        Middle East & North Africa

107                                     Middle income

139                                        South Asia

147                                Sub-Saharan Africa

170                               Upper middle income

177                                             World

Name: Short Name, dtype: object

Going through this process is very important in helping you plan your dashboards and 
apps. For example, knowing that we have four classifications for income levels means that 
it makes sense to create sub-plots for them side by side. But if we had 20 classifications, it 
might not be a good idea to do so.

Let's create one more column and then move on to the next file.

Since we are dealing with countries, we can use flags as visual and easy-to-spot identifiers. 
Since flags are emojis, and they are basically Unicode characters, they can be rendered as 
text on our charts, just like other regular text. We can later consider using other emojis as 
symbols that make it easy for the reader to spot growth and decline, for example (using 
the relevant arrow symbols and colors). This can also be useful when you don't have much 
space and you still need to communicate something to the users, especially on smaller 
screens. An emoji is worth a thousand words!

The interesting thing about country flag emojis is that they are a concatenation of two 
special letters whose name is "REGIONAL INDICATOR SYMBOL LETTER <letter>". 
For example, these are the regional indicator symbols for the letters A and B:AB.

You simply have to get the two-letter code of a certain country, and look up the name 
from the unicodedata Python Standard Library module. The lookup function takes 
the name of a character and returns the character itself:

from unicodedata import lookup

lookup('LATIN CAPITAL LETTER E')

'E'

lookup("REGIONAL INDICATOR SYMBOL LETTER A")

'A'

Once we have two letters representing a country, we can look them up, and concatenate 
them to produce the respective country's flag. We can create a simple function that does 
that. We just need to handle the situation where the provided letters are either NaN or not 
part of the country code list.
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We can create a country_codes variable and check against it. If the provided letters are 
not in the list, we return the empty character, otherwise we create an emoji flag: 

country_codes = country[country['is_country']]['2-alpha code'].
dropna().str.lower().tolist()

We can now easily define the flag function:

def flag(letters):

    if pd.isna(letters) or (letters.lower() not in country_
codes):

        return ''

    L0 = lookup(f'REGIONAL INDICATOR SYMBOL LETTER 
{letters[0]}')

    L1 = lookup(f'REGIONAL INDICATOR SYMBOL LETTER 
{letters[1]}')

    return L0 + L1

Using this function, we can create our flag column:

country['flag'] =\

[flag(code) for code in country['2-alpha code']]

Figure 4.9 shows a random sample of countries, their flags, and the is_country column:

Figure 4.9 – Sample of rows showing countries and their flags
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In the case where Short Name is not a country, we get an empty string. We used the 
empty string and didn't use NaN because in many cases we might want to concatenate the 
country name with its flag, for titles or labels for instance, and an empty string would not 
cause any issues. Note that if you save the DataFrame to a file and reopen it, pandas will 
interpret empty strings as NaN, and you will have to either convert them or prevent them 
from being interpreted as such.

The country-series file
Our next file "PovStatsCountry-Series.csv" simply contains a list of the country 
codes and shows the sources of their population data. We'll see if/when we might use this 
as metadata in a relevant chart.

The footnotes file
Next, we'll take a quick look at the footnotes file PovStatsFootNote.csv:

There is an empty column Unnamed: 4, which we need to drop, and then convert the 
years to integers. They are represented as YR2015 and that's why we extract the characters 
starting from index 2. We renamed the columns to make them consistent with the 
series DataFrame, to make it easy to merge them when needed:

footnote = pd.read_csv('data/PovStatsFootNote.csv')

footnote = footnote.drop('Unnamed: 4', axis=1)

footnote['Year'] = footnote['Year'].str[2:].astype(int)

footnote.columns = ['Country Code', Series Code', 'year', 
'footnote']

footnote
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Figure 4.10 shows a few rows from the footnote DataFrame:

Figure 4.10 – Sample of rows from the footnote file

That looks like a large number of notes about the data. We should make sure to include 
them somehow, to make sure the readers get the full picture. Those footnotes seem to 
be based on combinations of country, indicator, and year. Since the three are encoded in 
a consistent way with other tables, it should be straightforward to incorporate and map 
them to the relevant values elsewhere.

The data file
Next is the main data file, which we have already worked with in previous chapters, but we 
want to now reshape and merge with other DataFrames, for a more intuitive and powerful 
view into our dataset.

Let's now explore this file:

data = pd.read_csv('data/PovStatsData.csv')

data = data.drop('Unnamed: 50', axis=1)

print(data.shape)

data.sample(3)

The preceding code removes the column named Unnamed: 50, prints the shape of the 
data DataFrame, and displays a random sample of rows, as you can see in Figure 4.11:
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Figure 4.11 – Sample of rows and columns from the data file

It's always interesting to know how many missing values we have, and what percentage 
they form of all values. The interesting parts are the columns starting from 1974 till the 
end of the DataFrame. The isna method returns a Series of Booleans for each column. 
Taking the mean of that gets the percentage of missing values per column, as a Series. 
Running mean again gives the overall percentage of missing values:

data.loc[:, '1974':].isna().mean().mean()

0.9184470475910692

91.8% of our cells are empty. This has important implications for the results because most 
of the time we won't have enough data, or we won't have it for certain countries. Many 
countries didn't exist in their current form before the early nineties, for example, so this 
is one of the reasons. You can check out the series DataFrame and all the information 
about the indicators and the data collection issues where applicable.

Let's now explore how we can reshape DataFrames to and from long format, and more 
importantly, why we would want to do so.

Melting DataFrames
One of the first things you probably noticed is that years are spread across columns, with 
the values corresponding to them, each in its respective cell under the respective year. The 
issue is that 1980 is not really a variable. A more useful way is to have a year variable, 
and in that column, the values would vary from 1974 to 2019. If you remember the way 
we created the first chart in this chapter, you can see how this makes our life much easier. 
Let me illustrate what I mean, using a small dataset so things are clear, and then we can 
implement the same approach with the data DataFrame.
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Figure 4.12 shows how we can have the same data structured differently while containing 
the same information:

 

Figure 4.12 – Two datasets containing the same information in two different formats

Our current DataFrame is structured like the table on the right, and it would be easier to 
have it in a format like the one on the left.

The difficulty with the wide format is that the variables are presented in different ways. In 
some cases, they are displayed vertically in a column (country and indicator), while in 
others, they are displayed horizontally across the columns 2015 and 2020. Accessing the 
same data in the long format DataFrame is straightforward: we simply specify the columns 
that we want. In addition to that, we get automatic mapping of values. For example, taking 
the columns year and value from the long DataFrame would automatically map 2015 to 
100, 2015 to 10, and so on. At the same time, each row is a complete and independent 
representation of the case we are dealing with.

The good news is that this is doable with one call to the melt method:

wide_df.melt(id_vars=['country', 'indicator'],

             value_vars=['2015', '2020'],

             var_name='year')

Here is an overview of what the preceding code and parameters do:

• id_vars: Keep these as rows and duplicate them as needed to keep the mapping  
in place.
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• value_vars: Take these columns and make them values, melt them into a new 
column, and make sure the mapping with other values remains consistent with the 
previous structure. If we don't specify value_vars, then this operation will be 
used for all unspecified columns (all columns except id_vars).

• var_name: Optional. What you want this newly created column to be  
named – "year" in this case. 

Let's do this operation on our data DataFrame:

id_vars =['Country Name', 'Country Code', 'Indicator Name', 
'Indicator Code']

data_melt = data.melt(id_vars=id_vars,

                      var_name='year').dropna(subset=['value'])

data_melt['year'] = data_melt['year'].astype(int)

print(data_melt.shape)

data_melt.sample(10)

The code is almost identical to the previous example. We first created a list of id_vars 
and used it for the argument of the same name. Right after that, we removed the missing 
values under the value column. We could have changed the name of this column by 
using the value_name parameter, but "value" seems appropriate. We then converted 
the years to integers. Running this code displays the shape and a sample of the new 
data_melt DataFrame, shown in Figure 4.13:

Figure 4.13 – The data DataFrame after being "melted"

The first four columns are the same as they were, with each unique combination intact. 
We now have all the year columns and their values, condensed into two columns, year  
and value.
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Now let's see how we can improve the structure further by doing the reverse operation on 
other columns.

Pivoting DataFrames
The Indicator Name column might be improved by doing the reverse of the operation 
that we just did to the years columns. Ideally, we should have a column for population, 
another one for poverty rates, and so on. Let's first do this using our long (melted) 
example DataFrame so it's clear.

Assume we wanted to convert the unique values in the country column and make them 
column names. We use the pivot method for that. This can give us a "round trip" back 
where we came from, using the melt method. Here, I'm using it on different columns: 

melted.pivot(index=['year', 'indicator'],

             columns='country',

             values='value').reset_index()

Running this code would convert the melted DataFrame to a wide format (pivoted) 
DataFrame as you can see in Figure 4.14:

 

Figure 4.14 – The conversion from long to wide format
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The Indicator Name column in data_melt contains names that can be better used as 
column names, so each indicator can be represented independently in its own column, to 
be consistent with our data representation:

data_pivot =\

data_melt.pivot(index=['Country Name', 'Country Code', 'year'],

                             columns='Indicator Name',

                             values='value').reset_index()

print(data_pivot.shape)

data_pivot.sample(5)

This will produce our data_pivot DataFrame, a sample of which you can see in  
Figure 4.15:

Figure 4.15 – The long form (tidy) poverty DataFrame

If our work is correct, we should now have a unique combination of country and year in 
each row. That was the whole point of the exercise actually. Let's test that our work is correct:

data_pivot[['Country Code', 'year']].duplicated().any()

False

Rows now contain country names, codes, and years, as well as all the values for the 
different indicators. The country information can be enriched by including the metadata 
that we have in the country DataFrame. Let's take a look at the merge function, and 
after that, we'll start using Plotly Express.
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Merging DataFrames
First, let's look at a simple example of how merging works, and then we can merge the 
data_pivot and country DataFrames. Figure 4.16 shows how two DataFrames can  
be merged:

Figure 4.16 How DataFrames are merged

The merge operation can be done with the merge function:

pd.merge(left=left, right=right, 

         left_on='country', 

         right_on='country', 

         how='left')

Here are the details of the preceding call to pd.merge:

• left_on: The name of the column(s) from the left DataFrame to merge on.

• right_on: The name of the column(s) from the right DataFrame to merge on.

• how: The merge method. In this case, "left" means to take all the rows in left 
and only match them with rows in right that have the same values in the country 
columns. Matching rows will be duplicated if needed in the resulting DataFrame, as 
in this case. Rows in right that don't have matches in the country column will 
be discarded. The merged DataFrame should end up with the same number of rows 
as the left DataFrame.

There are several other options for this function, and it's quite powerful. Make sure to 
check out the other merge methods: inner, outer, and right. For our case, we will be using 
the options shown in the previous example, so let's do it now. We will merge data_pivot 
with country the same way:

poverty = pd.merge(data_pivot, country, 

                   left_on='Country Code',

                   right_on='Country Code',

                   how='left')
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print(poverty.shape)

poverty

This merge operation produces the poverty DataFrame, which you can see in  
Figure 4.17:

Figure 4.17 – Merging data_pivot and country

A quick check to make sure our work is correct: 

poverty[['Country Code', 'year']].duplicated().any()

False

The eight additional columns in the rectangle on the right are some of the additional 
columns that were added to our poverty DataFrame. Now it's very easy to take a certain 
region or income group, filter by its countries, color by its values, or group it however we 
want. This is now looking like the Gapminder dataset, only with many more indicators 
and years, and more metadata about countries.

We now have a DataFrame that has a consistent structure.

Every column contains data about one and only one variable. All values in columns are 
of the same data type (or missing). Each row can independently represent a complete 
observation, because it contains the full information available, like all other rows.



92     Data Manipulation and Preparation, Paving the Way to Plotly Express

Important note
The main drawback of the long format is that it is inefficient for storage. From 
that perspective, we are unnecessarily repeating a lot of values, which takes 
a lot of space. We will tackle this later, but keep in mind that this format is 
extremely efficient in terms of your time as a developer. As we saw in several 
examples, once the mapping is consistent, creating and changing your 
visualizations becomes much easier.

I highly recommend reading Hadley Wickham's Tidy Data paper, for a deeper discussion 
on several ways in which data might be formatted and different solutions for that. The 
examples shown here are inspired by those principles: https://www.jstatsoft.
org/article/view/v059i10.

We are now ready to explore how to use Plotly Express, first with a toy dataset, and then 
with the dataset that we prepared.

Learning Plotly Express
Plotly Express is a higher-level plotting system, built on top of Plotly. Not only does it 
handle certain defaults for us, such as labeling axes and legends, it enables us to utilize 
our data to express many of its attributes using visual aesthetics (size, color, location, 
and so on). This can be done simply by declaring what attribute we want to express with 
which column of our data, given a few assumptions about the data structure. So, it mainly 
provides us with the flexibility to approach the problem from the data point of view, as 
mentioned at the beginning of the chapter. 

Let's first create a simple DataFrame: 

df = pd.DataFrame({

    'numbers': [1, 2, 3, 4, 5, 6, 7, 8],

    'colors': ['blue', 'green', 'orange', 'yellow', 'black', 
'gray', 'pink', 'white'],

    'floats': [1.1, 1.2, 1.3, 2.4, 2.1, 5.6, 6.2, 5.3],

    'shapes': ['rectangle', 'circle', 'triangle', 'rectangle', 
'circle', 'triangle', 'rectangle', 'circle'],

    'letters': list('AAABBCCC')

})

df

https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10
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This will produce the DataFrame in Figure 4.18:

Figure 4.18 – A simple example DataFrame

We typically create charts with Plotly Express by calling the type of the chart as a function, 
px.line, px.histogram, and so on. Each function has its own set of parameters, 
based on its type.

There are several ways of passing arguments to those functions, and we will focus on two 
main approaches:

• A DataFrame with column names: In most cases, the first parameter is data_frame.  
You set the DataFrame that you want to visualize, and then you specify the columns 
you want to use for the parameters that you want. For our example DataFrame, 
if we want to create a scatter plot with numbers on the X axis and floats on the 
Y axis, we call it like this: px.scatter(data_frame=df, x='numbers', 
y='floats').

• Arrays as arguments: Another way of specifying parameters is by simply passing 
lists, tuples, or any array-like data structure, without a data_frame argument. We 
can create the same scatter plot by running: px.scatter(x=df['numbers'], 
y=df['floats']). This is a straightforward and very fast approach, whenever 
you have lists that you want to explore.

We can also mix the approaches. We can set a data_frame argument with a few column 
names as arguments, and we can pass separate lists for other arguments when needed.  
A few examples should illustrate these points easily. The following code shows how easy it 
is to create a scatter plot:

px.scatter(df, x='numbers', y='floats')



94     Data Manipulation and Preparation, Paving the Way to Plotly Express

Figure 4.19 shows the resulting figure in JupyterLab:

Figure 4.19 – Creating a scatter plot with Plotly Express

I'm sure you noticed that we got the X- and Y-axis titles set for us by default. It takes the 
names of the arguments we gave (the DataFrame columns in this example) and uses them 
for that.

We have several other variables in the DataFrame, and we might be interested in checking 
whether there are any relations between them. For example, let's check whether there is a 
relationship between floats and shapes.

We can rerun the same code and add two parameters that allow us to distinguish which 
markers belong to which shape. We can use the color parameter for that, and it will 
assign a different color to each marker based on the shapes that it corresponds to (in 
the same row). If you are reading this book from the printed grayscale edition, the same 
argument to the symbol parameter was added, to make it easy to distinguish them. 
This also makes it easier for readers on a colored screen as well, by giving two signals to 
distinguish the markers:

Px.scatter(df,

           x='numbers',

           y='floats',
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           color='shapes',

           symbol='shapes')

Figure 4.20 shows the code and resulting figure in JupyterLab:

Figure 4.20 – Assigning colors and symbols to markers

Note that we have a legend helping us to distinguish the markers by telling us which color 
and symbol belong to which shape. It also has its own title, all generated by default. 

There seems to be no relationship between floats and shapes. So, let's try coloring and 
setting symbols based on the letters column, which can be done with the following code:

px.scatter(df,

           x='numbers',

           y='floats',

           color='letters',

           symbol='letters',

           size=[35] * 8)
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Figure 4.21 demonstrates this: 

Figure 4.21 – Setting marker sizes using an independent list

We can see a clear difference based on the letters now. This shows how easy it is to 
explore your datasets by quickly trying out different options. Note that we also mixed the 
approaches this time by setting a size for the markers. Size wasn't mapped to a value; it 
was set to make the symbols bigger and easier to see. So, we simply passed a list with the 
marker size that we wanted. The list had to have the same length as the other variables that 
we are visualizing.

Let's explore bar charts with the same approach and using the same dataset. We can adjust 
how the bars are displayed using the barmode parameter like this:

px.bar(df, x='letters', y='floats', color='shapes', 
barmode='group')
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Figure 4.22 shows two different ways of displaying the bars – the default, on top of each 
other, and "group," as you can see:

 

Figure 4.22 – Creating bar charts using different display modes (barmode)
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The discussion about long (tidy) format data should make it very easy to understand how 
to use Plotly. You just need a basic understanding of the chart type, and how it works, and 
then you can easily set the arguments that you want.

Important note
Plotly Express does not require data to be in long format. It is very flexible 
and can handle wide, long, as well as mixed format data. Also, pandas and 
numpy are extremely flexible in data manipulation. I just believe it is better to 
use a consistent approach for your own productivity.

Now let's see how Plotly Express relates to the Figure object and when to use  
which approach.

Plotly Express and Figure objects
It's helpful to know that all calls to the Plotly Express chart functions return a Figure 
object, the same one we discussed in Chapter 3, Working with Plotly's Figure Objects.  
This is very important for customizing our charts after creating them, in case you want  
to change the defaults. Let's say you created a scatter plot, and after that, you wanted 
to add an annotation to it to explain something. You could do it just like we did in the 
previous chapter:

import plotly express as px

fig = px.scatter(x=[1, 2, 3], y=[23, 12, 34])

fig.add_annotation(x=1, y=23, text='This is the first value')

Everything you know about the Figure object and how it is structured can be used with 
Plotly Express, so this builds on that knowledge.

This naturally raises the question of when to use Plotly Express and when to use Plotly's 
graph_objects module for creating charts from a lower level.

This question can be tackled by asking the more general question: Given two interfaces 
that do the same thing at different levels of abstraction, how do we choose between them?
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Consider three different approaches to having a pizza:

• The ordering approach: You call a restaurant and order your pizza. It arrives at 
your doorstep in half an hour, and you start eating.

• The supermarket approach: You go to a supermarket, buy dough, cheese, 
vegetables, and all other ingredients. You then make the pizza yourself.

• The farm approach: You grow tomatoes in your backyard. You raise cows, milk 
them, and convert the milk to cheese, and so on.

As we go up to higher-level interfaces, towards the ordering approach, the amount of 
knowledge required decreases a lot. Someone else holds responsibility, and quality is 
checked by the market forces of reputation and competition.

The price we pay for this is the diminished freedom and options. Each restaurant has a set 
of options to choose from, and you have to choose from those options.

Going down to lower levels, the amount of knowledge required increases, we have to 
handle more complexity, we hold more responsibility for the outcomes, and it takes 
much more time. What we gain here is much more freedom and power to customize our 
outcomes the way we want. Cost is a major benefit as well, but only on a large enough 
scale. If you only want to have a pizza today, it's probably cheaper to order it. But if you 
plan on having one every day, then you can expect major cost-savings if you do it yourself.

This is the trade-off you have in choosing between the higher-level Plotly Express, and the 
lower-level Plotly graph_objects.

Since Plotly Express returns Figure objects, then it's generally not a difficult  
decision, because you can retroactively modify them. In general, it's good to use the 
graph_objects module in the following cases:

• Non-standard visualizations: Many diagrams created in this book were done with 
Plotly. To create such diagrams with Plotly Express would be quite difficult because 
they are not standard graphs.

• When you have a lot of customizations: If you want to make a lot of changes to 
most aspects of your charts, you might end up writing the same amount of code and 
putting in the same amount of effort, so you might consider doing it directly using 
the graph_objects module.
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• Sub-plots: Sometimes you want to have multiple charts side by side, or in a grid. If 
these are different charts and not facets as we saw at the beginning of the chapter, 
then it's better to do them with graph_objects.

In general, Plotly Express is usually a better starting point for creating your charts, as we 
saw how powerful and convenient it is.

You are now ready to use the poverty dataset to specify the visualization that you want 
with Plotly Express, starting from the data.

Creating a Plotly Express chart using the dataset
Let's see how we might summarize the poverty data_frame with a scatter plot:

1. Create variables for year, indicator, and a grouping (grouper) metric to use 
in the visualization. The grouping metric will be used to distinguish between the 
markers (using color and symbol), and could take any categorical value from the 
dataset, such as region, income group, and so on:

year = 2010

indicator = 'Population, total'

grouper = 'Region'

2. Based on these variables, create a DataFrame, where the year column is equal to 
year, sort the values by indicator, and remove any missing values from the 
columns of indicator and grouper:

df = (poverty[poverty['year'].eq(year)]

      .sort_values(indicator)

      .dropna(subset=[indicator, grouper]))

3. Set the x axis values to indicator and set the y axis values to the column 
"Country Name". The color and symbol of the markers should be set using 
grouper. The X-axis values are expected to have outliers, and not to be normally 
distributed, so set log_x to True. The hover_name of each hover label should 
take the country name together with its flag. Set the title of the figure by 
concatenating indicator, "by", grouper, and year. Give markers a constant 
size, and set the height to 700 pixels:

px.scatter(data_frame=df,

           x=indicator,
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           y='Country Name',

           color=grouper,

           symbol=grouper,

           log_x=True,

           hover_name=df['Short Name'] + ' ' + 
df['flag'],

           size=[1]* len(df),

           title= ' '.join([indicator, 'by', grouper, 
str(year)]),

           height=700)

This creates the chart in Figure 4.23:

Figure 4.23 – The Plotly Express figure using the poverty dataset
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By simply playing with the different combinations of year, grouper, and indicator, 
you can generate hundreds of charts. Figure 4.24 shows some samples:

Figure 4.24 – Other figures using the same dataset

With these powerful features, and with data formatted as observations by variables, we can 
easily visualize six or seven attributes of our data using several visual attributes: X axis, Y 
axis, marker size, marker symbol, marker color, facets (columns or rows), and animations. 
We can also add more context and information using hover labels, as well as annotations. 
Any combination of those attributes can be explored simply by selecting which column to 
map to which attribute.

Let's now explore how easy it is to enrich our dataset with external resources.
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Adding new data and columns to our dataset
There are many ways to add more data, but I would like to highlight two very easy and 
effective ones:

• Adding columns or features: We added our flag column by creating the respective 
emoji for each country using its two-letter code. You might be interested in 
segmenting or grouping countries according to other attributes. Maybe you suspect 
there might be something distinctive about countries using the euro, countries where 
Spanish or Arabic is spoken, or maybe signatories of a certain trade agreement. 
Wikipedia contains numerous such lists. Using the pandas read_html function, 
which downloads all tables on a web page, you can very easily download any such 
list. Assuming it has the country codes, you can merge it with the main DataFrame 
and start analyzing accordingly. This can also be a filtering mechanism, where you 
simply want a subset of all countries.

• Adding new data: The World Bank has thousands of other similar datasets. For 
example, the population figures we have here are for the total population. There are 
many detailed and segmented population datasets that break the numbers down by 
gender, age, and other factors. Using the World Bank's API, you can easily obtain 
other data, merge it, and immediately enrich your analysis.

Let's now review what we have done in this chapter and in Part 1 of the book.

Summary
You now have enough information and have seen enough examples to create dashboards 
quickly. In Chapter 1, Overview of the Dash Ecosystem, we learned how apps are structured 
and learned how to build fully running apps, but without interactivity. In Chapter 2, 
Exploring the Structure of a Dash App, we explored how interactivity works, through callback 
functions, and we added interactive features to our app. Chapter 3, Working with Plotly's 
Figure Objects, introduced how Plotly's charts are created, their components, and how to 
manipulate them to achieve the results you want. Finally, in this chapter, we introduced 
Plotly Express, a high-level interface to Plotly that is easy to use but more importantly, 
follows an intuitive approach that is data-oriented, as opposed to being chart-oriented.

One of the most important and biggest parts of creating visualizations is the process of 
preparing data in certain formats, after which it becomes relatively straightforward to 
create those visualizations. Investing in understanding how your dataset is structured, as 
well as investing time and effort in reshaping your data, pays well in the end, as we saw in 
the extensive example in this chapter.
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Armed with this knowledge and examples, as well as our familiarity with our dataset, 
and straightforward mechanisms to enrich it, we are now ready to explore in more detail 
different Dash components, as well as different types of charts.

Part 2 will go deep into different chart types, how to use them, and the different ways we 
can combine them with the interactivity features that Dash provides.



This section shows you how to start building with real data and exploring how to utilize 
the full options of interactivity with Dash.

This section comprises the following chapters:

• Chapter 5, Interactively Comparing Values with Bar Charts and Drop-down Menus

• Chapter 6, Exploring Variables with Scatter Plots and Filtering Subsets with Sliders

• Chapter 7, Exploring Map Plots and Enriching Your Dashboards with Markdown

• Chapter 8, Calculating Data Frequency and Building Interactive Tables

Section 2:  
Adding Functionality 

to Your App with 
Real Data





5
Interactively 

Comparing Values 
with Bar Charts and 

Dropdown Menus
You now have all the basics you need to easily construct interactive features linking page 
elements and to produce interactive dashboards. The main concepts have been covered 
with the help of several examples, and we will now be focusing on specific types of charts 
and the different options that they provide. More importantly, we will go into additional 
details for customizing our charts and making them suitable for several purposes, firstly, 
in order to be good enough to publish and share with a wider audience, as opposed to 
just for your interactive use, and secondly, to ensure that they properly fit on a page 
that potentially contains other components, and making sure we utilize the available 
space in an optimal way. Another important aspect to cover is the dynamic nature of the 
charts that our users can generate. Based on the user's choice of option in an interactive 
component, the resulting dataset might contain 7 or maybe 70 elements to plot. In some 
cases, it might not contain any data. This dramatically affects the resulting charts and their 
usability, and can even make them difficult to read in certain cases. We will explore a few 
solutions to cater for these situations.
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In other words, we are trying to move from working with a prototype that simply does 
what it's supposed to do to working with a product that can be shared or published to a 
wide audience.

The chapters in Part 2 of this book will each focus on a chart type and an interactive 
component to explore their options. In this chapter, we will explore bar charts and how 
they can be used with drop-down components, from Dash Core Component. There is 
nothing in the nature of these components that links a certain component to a certain 
chart type. They are just used together for organization purposes. A dropdown can 
be used with any type of chart, and any type of interactive component can be used to 
manipulate a bar chart.

We will be focusing on the following topics:

• Plotting bar charts vertically and horizontally

• Linking bar charts and dropdowns

• Exploring different ways of displaying multiple bar charts (stacked, grouped, 
overlaid, and relative)

• Using facets to split charts into multiple sub-charts – horizontally, vertically,  
or wrapped

• Exploring additional features of dropdowns (allowing multiple selections, adding 
placeholder text, and more) 

Technical requirements
We will continue to use the packages that we are now familiar with – JupyterDash 
and Dash, for prototyping and then integrating into our app, respectively. For data 
manipulation, we will be using pandas, and JupyterLab will be our starting point 
for building and testing various options. Then, we will use Dash Core Component, Dash 
HTML Components, and Dash Bootstrap Components to update our app.

The dataset that we will be using is the same dataset, specifically the poverty 
DataFrame, that we created in the previous chapter. The code files of this chapter can be 
found on GitHub at https://github.com/PacktPublishing/Interactive-
Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/
chapter_05.

Check out the following video to see the Code in Action at https://bit.ly/3ebv8sk.

Let's start by exploring the two main ways in which we can display bar charts – vertically 
and horizontally.

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_05
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_05
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_05
https://bit.ly/3ebv8sk
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Plotting bar charts vertically and horizontally
The default display of bar charts is vertical. This is intuitive and easy to understand. 
Each category or item takes a separate position on the x axis, and the heights of the bars 
represent a certain quantity on the y axis. The same applies when the bars are displayed 
horizontally, only in this case, the width of the bars is what represents the quantity. 
Usually, with relatively fewer values, the vertical orientation is good. However, horizontal 
orientation can be more effective in two cases:

• When we have many categories: In this case, the bars might not fit on the screen, 
and we might need to either make them much thinner than the default width, or we 
might need to force horizontal scrolling, which is not as natural as vertical scrolling.

• When the names of the categories are relatively long: This is not really a big 
problem, and the solution is easy. Plotly already handles this for us, by automatically 
changing the angle at which the names (tick labels) are displayed. If needed, the 
names can be displayed vertically for maximum space utilization. Reading text 
displayed horizontally is the most natural though, and it is the most suitable way for 
these situations.

Let's see this in action using our poverty DataFrame, so we can see the effects of these 
options, and also to get to know our dataset a little better. We will take a look at one of 
the most widely used measures of income/wealth inequality, the Gini index. It is also 
referred to as the Gini ratio, or coefficient. To learn a bit about it, we can use the series 
DataFrame, which contains information about the indicators that we will be working with:

1. Import pandas and create the series variable. The name of the variable was 
chosen based on the filename, as we did in the previous chapter. Please don't 
confuse this with the pandas.Series object:

import pandas as pd

series = pd.read_csv('data/PovStatsSeries.csv')

2. Create a variable, gini, as a string, as an easier alternative to using the long name 
of the indicator:

gini = 'GINI index (World Bank estimate)'

3. Extract the long definition of the indicator by using the column of the same name:

series[series['Indicator Name']==gini]['Long 
definition'].values[0]
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Gini index measures the extent to which the distribution 
of income (or, in some cases, consumption expenditure) 
among individuals or households within an economy 
deviates from a perfectly equal distribution. A Lorenz 
curve plots the cumulative percentages of total income 
received against the cumulative number of recipients, 
starting with the poorest individual or household. The 
Gini index measures the area between the Lorenz curve 
and a hypothetical line of absolute equality, expressed 
as a percentage of the maximum area under the line. Thus 
a Gini index of 0 represents perfect equality, while an 
index of 100 implies perfect inequality.

4. Knowing that the values vary between 0 and 100, let's check what the most extreme 
values are for all years and countries:

poverty[gini].min(), poverty[gini].max()

(20.2, 65.8)

5. We can also learn a little more about this column by using the describe method 
from pandas:

Poverty[gini].describe()

count    1674.000000

mean       38.557766

std         9.384352

min        20.200000

25%        31.300000

50%        36.400000

75%        45.275000

max        65.800000

Name: GINI index (World Bank estimate), dtype: float64

We will learn much more about this indicator and interactively explore and compare 
different countries across different years, but this statement from the Limitations 
and exceptions column stood out to me: "Because the underlying household surveys 
differ in methods and types of welfare measures collected, data is not strictly comparable 
across countries or even across years within a country."

So, we will have to be careful not to take those values precisely, as mentioned, and keep 
this limitation in mind.
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Now that we are a bit more familiar with the indicator, we are ready to explore various 
options for visualizing it with a bar chart:

1. We start by creating a subset of the poverty DataFrame, named df. This will be 
a subset where the year values are equal to an arbitrarily selected year. We then 
remove the missing values, and sort the available ones using the gini column:

year = 1980

df =\

poverty[poverty['year']==year].sort_values(gini).
dropna(subset=[gini]) 

2. We can now easily create our Gini index bar chart with Plotly Express. The code 
also dynamically generates the title by joining the name of the indicator to the 
selected year:

import plotly.express as px

px.bar(df,

       x='Country Name',

       y=gini, 

       title=' - '.join([gini, str(year)]))

Running the preceding code produces the chart in Figure 5.1:

Figure 5.1 – A bar chart of the Gini index for the year 1980
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For the year 1980, it seems we only have data for three countries, and having them 
displayed vertically seems fine, easily readable, and clear. Let's now repeat the same 
process for the year 1990, and see the result in Figure 5.2:

Figure 5.2 – A bar chart of the Gini index for the year 1990

We can read the country names, but not as naturally as we would if they were displayed 
horizontally as in Figure 5.1. Now, if users were reading the same chart on a narrower 
screen, the country names would be displayed vertically, and it becomes even more 
difficult to read them, as you can see in Figure 5.3:

Figure 5.3 – A bar chart of the Gini index for the year 1990 with country names displayed vertically
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In more recent years, we have data for many more countries, and in those cases, there is 
not enough horizontal space to fit them. Some names are not even displayed, unless you 
hover over the respective bar, or zoom in to that part of the chart. As an example, you can 
see the same chart for the year 2010 in Figure 5.4:

Figure 5.4 – A bar chart of the Gini index for the year 2010 with some country names not displayed

Based on the charts we just saw, we now have a better understanding of the challenge of 
making an interactive bar chart dynamically generated for the Gini index. If we want to let 
users select the year they are interested in, then we have a few points to deal with.

First, the number of available values for this metric varies from 3 to more than 150, which 
is a very large range. Second, it would be better, and safer, to use horizontal orientation, 
because in all cases country names would be displayed horizontally, and no matter how 
long the names are, they would be easy to read. These issues can be easily solved by setting 
orientation='h' in our call to px.bar, but one challenge remains. We need to 
determine the optimal height of the chart, based on the number of available countries in 
the chosen year, knowing how big the range is, as we just saw. Let's first see what the bar 
chart looks like when displayed horizontally, and then design the solution for an interactive 
one. We will run the same code, but with two principal differences. The x and y arguments 
need to be swapped, as they will each take the opposite axis, and we also need to set the 
appropriate value for the orientation parameter, h for "horizontal" in this case:

year = 2000

px.bar(df,

       x=gini,

       y='Country Name',

       title=' - '.join([gini, str(year)]),

       orientation='h')
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The preceding code produces the chart in Figure 5.5 for the year 2000:

Figure 5.5 – A horizontal bar chart of the Gini index for the year 2000 for all available countries

Now the countries are very easily readable (the ones that are displayed at least), but the 
bars are too narrow and crowded. The chart looks unnecessarily wide (especially knowing 
that the minimum and maximum values are in the interval [20.2, 65.8]). We can manually 
set the width of the chart in our function call if we require, but we need to figure out a way 
to dynamically set the height of the chart, which can be set using the height parameter.

One way to do this is to set a fixed height in pixels. Then, based on the number of 
countries in df, we can add 20 pixels per country. For example, if we have 10 countries  
in df, then our height would be 200 + (10x20) = 400 pixels. Once df has been created,  
we can easily count the number of countries it contains, and assign it to a variable,  
n_countries. The modified code to produce this looks like this:

year = 2000

df =\

poverty[poverty['year']==year].sort_values(gini).
dropna(subset=[gini])

n_countries = len(df['Country Name'])

px.bar(df,

       x=indicator,

       y='Country Name',

       title=' - '.join([gini, str(year)]),

       height=200 + (20*n_countries),

       orientation='h')

Running the preceding code over three years that have a different number of countries 
produces the charts in Figure 5.6:
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Figure 5.6 – Various horizontal bar charts with a dynamic height based on the number of countries

The long chart on the right was resized to fit on the page, but it is pretty much the same 
as the others in terms of the height of the bars and the readability of country names. All 
countries are visible, easy to read, and nothing is hidden.

With this solution, we took care of the dynamic number of countries that can be selected 
by dynamically setting the total height of the figure, based on the number of countries.

This approach can be thought of as a discovery approach. Users don't know exactly what 
they are looking for; they select a year and see whatever data is available for that year. 
After they select a few options, they might be interested in digging deeper to learn more 
about specific countries. For example, they might be interested in how a certain country's 
Gini index has progressed over time. We will do this next.
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Creating vertical bar charts with many values
When we want to let users visualize how a country's Gini index (or any other indicator) 
has progressed over the years, we can do so with vertical bars. Because years represent a 
sequence of events, displaying them side by side is natural, because it shows a trend over 
time. And since years are numbers in a sequence, we don't have the readability issue that 
we had with country names. Even if the bars end up much thinner, and even if some of 
them weren't displayed, users can easily mentally "fill in the blanks" where required.

The code to produce such a chart is very similar to the last one, and actually simpler, 
because we don't need to worry about dynamically setting the height. Instead of year as 
our dynamic variable, we will have Country Name. The definition of df will depend on 
the rows in our dataset that contain the chosen country: 

country = "Sweden"

df = poverty[poverty['Country Name']==country].
dropna(subset=[gini])

And now we can generate the chart in a straightforward way with the following code: 

px.bar(df,

       x='year',

       y=gini,

       title=' - '.join([gini, country]))

Running the preceding code produces the chart in Figure 5.7 for Sweden:

Figure 5.7 – A vertical bar chart with years on the x axis
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Note that the years with missing values are still available on the x axis, even though there 
are no bars representing their value for those years. This is important because it shows 
where the gaps are in our data. It would be misleading otherwise if we only displayed years 
that contained data, giving the false impression of continuous data for all years.

We have familiarized ourselves a bit with the Gini index data, and tested how to make two 
types of dynamic charts. We are now ready to create a "Gini Index" section and add it to 
our app, which we will be doing next.

Linking bar charts and dropdowns
We now want to put together everything that we've done so far. The plan is to have two 
dropdowns, side by side, with a chart underneath each. The first will provide years as 
options that will generate a horizontal bar chart. The second will generate a vertical bar 
chart, based on the selected country. The end goal is to produce a new section in our app 
that looks like Figure 5.8:

Figure 5.8 – The Gini Index section in the app with two drop-down components and two bar charts
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Let's start by building this as a complete and independent app in JupyterLab, and make 
sure it works as expected:

1. We first run the necessary imports and instantiate the app. We already covered all 
these imports, except for the PreventUpdate exception. This is a useful tool when 
there is no value selected in a component that is handled by a callback function; for 
example, when a user first loads the app, or when there are no default values. In this 
case, the input value coming from Dropdown would be None and would most likely 
raise exceptions. In those situations, we can use this exception to freeze things, so to 
speak, until a proper input is passed to the callback function:

from jupyter_dash import JupyterDash

import dash_html_components as html

import dash_core_components as dcc

import dash_bootstrap_components as dbc

from dash.dependencies import Output, Input

from dash.exceptions import PreventUpdate

app = JupyterDash(__name__)

2. Create gini_df, which is a subset of poverty that doesn't have missing values in 
the Gini index column:

gini_df = poverty[poverty[gini].notna()]

3. Create the app's layout using one top-level div, within which we will place all  
other components:

app.layout  = html.Div()
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4. Inside the div we just created, we want to add a section title, as well as a dbc.Row 
component. This row will then contain two dbc.Col elements, which would, in 
turn, contain a dropdown and a chart each. Here is a list of elements that will be 
inserted in the div:

[

    html.H2('Gini Index - World Bank Data',

             style={'textAlign': 'center'}),

    dbc.Row([

        dbc.Col([

            dcc.Dropdown(id='gini_year_dropdown',

                         options=[{'label': year, 
'value': year}

                         for year in gini_df['year'].
drop_duplicates().sort_values()]),

               dcc.Graph(id='gini_year_barchart')

]),

            dbc.Col([

                dcc.Dropdown(id='gini_country_dropdown',

                             options=[{'label': country, 
'value': country}

    for country in gini_df['Country Name'].unique()]),

    dcc.Graph(id='gini_country_barchart')

    ])

])

]

5. The preceding code should take care of the layout once we insert it in the top-level 
div. Now we can create the first callback, which takes a year as input and returns 
the appropriate chart. Note how the PreventUpdate exception is used at the 
beginning of the function:

@app.callback(Output('gini_year_barchart', 'figure'),

              Input('gini_year_dropdown', 'value'))

def plot_gini_year_barchart(year):

    if not year:

        raise PreventUpdate

    df =\
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gini_df[gini_df['year'].eq(year)].sort_values(gini).
dropna(subset=[gini])

    n_countries = len(df['Country Name'])

    fig = px.bar(df,

                 x=gini,

                 y='Country Name',

                 orientation='h',

                 height=200 + (n_countries*20),

                 title=gini + ' ' + str(year))

    return fig

6. We can also do the same thing and create the other callback function that handles 
the second part of the Gini Index section:

@app.callback(Output('gini_country_barchart', 'figure'),

              Input('gini_country_dropdown', 'value'))

def plot_gini_country_barchart(country):

    if not country:

        raise PreventUpdate

    df = gini_df[gini_df['Country Name']==country].
dropna(subset=[gini])

    fig = px.bar(df,

                 x='year',

                 y=gini,

                 title=' - '.join([gini, country]))

    return fig

7.  Finally, we run the app:

if __name__ == '__main__':

    app.run_server(mode='inline')

This should create a running app as shown in Figure 5.8.
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We now want to incorporate this new functionality into our existing app. All we  
have to do is insert the visual components wherever we want them to appear. The 
callbacks can be added below the app's layout attribute. You can go ahead and  
make a copy of the latest version of the app that we created in Chapter 3, Working  
with Plotly's Figure Objects. You can insert the new components as a list between  
dcc.Graph(id='population_chart') and dbc.Tabs, as you can see in the 
following code snippet:

…

dcc.Graph(id='population_chart'),

html.Br(),

html.H2('Gini Index - World Bank Data', style={'textAlign': 
'center'}),

html.Br(),

dbc.Row([

    dbc.Col([

…

        dcc.Graph(id='gini_country_barchart')

    ]),

]),

dbc.Tabs([

    dbc.Tab([

…

Using one indicator, we created two dynamic charts, the first allowing users to explore 
the data for a given year, showing all available countries, and the other allowing them 
to explore data for all years, for a certain country. We also explored the two ways of 
displaying bars, horizontally and vertically, and discussed when it can be better to use 
each of the orientations.

We'll now move on to exploring how to plot multiple bar charts on the same figure, and  
see different ways of doing so. We will also explore a new set of indicators using those  
new techniques.
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Exploring different ways of displaying multiple 
bar charts (stacked, grouped, overlaid, and 
relative)
When we want to display values for different countries but for the same years, we have 
several options for how to display multiple bars on each position of the x axis. Figure 5.9 
shows the different ways in which we can do that when visualizing two variables, a and b: 

Figure 5.9 – Multiple bar charts displayed using different "barmode" options
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The four bar charts in the preceding diagram show the same information, but in different 
ways. This can be set using the barmode parameter. With relative, bars are displayed on 
top of one another, with negative values below, and positive values above, the zero line. If 
you set it to group, then bars will be displayed next to one another. With overlay, bars are 
displayed in front of one another, and by default, we get some transparency in order to see 
both bars. Finally, if you set it to stack, you get them on top of one another, like relative, 
but in this case, the negative values cancel out the positives, as you can see for values 2 
and 4 in the last chart. This is great if you want to compare proportions of each value to 
the total, especially if they all add up to the same total. This is what we will do with the 
income share indicators that are available in our dataset.

Creating the income share DataFrame
Let's take a look at the five columns that show the share of income for each of the five 
quintiles of countries' populations. We first create a subset of the poverty DataFrame, 
and call it income_share_df. This is done by filtering the columns using the regular 
expression shown here. We also drop missing values:

income_share_df =\

poverty.filter(regex='Country Name|^year$|Income share.*?20').
dropna()

income_share_df

Running the preceding code shows us a sample of rows from the newly created income_
share_df, as you can see in Figure 5.10:

Figure 5.10 – Sample rows showing income share quintiles per country
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For every country and year combination, we have five values. Each value shows the 
percentage of income of the respective group's share of the total for that country and year. 
We want to let users select a country and, as a result, display a chart showing how the split 
of those five values changes across all available years. To get an idea of the end result, take 
a look at Figure 5.11 showing those values for the United States:

Figure 5.11 – Income shares per quintile, shown for the selected country for all available years

Since these values all add up to 100 (with minor rounding errors), we can have clearly 
comparable bars across the years, because they all have the same total length. Since these 
are proportions, we are interested in seeing the split for a particular year, and also how 
that split changed across years.

As you can see, it is very easy to see how things change for the rightmost and leftmost 
parts of the bars because they have the same baseline, whether at the beginning or the 
end. However, for the values in the middle, it's not easy to do so. The reason is that their 
size changes, as well as their baselines. So, the more divisions you add, the more difficult it 
gets to compare them across years. But since Plotly's charts are interactive, users can easily 
hover over the bars, get their exact values, and compare them.
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Producing this chart should be straightforward. We already created our DataFrame, and 
have our values. We can just set the x and y values, and set orientation='h', but the 
problem is that the categories are ordered alphabetically in the DataFrame, and we want 
them to be ordered according to their numeric meaning, from the lowest to the highest, 
so that their relative position can be easily understood by users. As usual, this is mainly a 
data manipulation challenge. So, let's do it:

1. We first need to rename the columns and order them by their value, from "lowest" 
to "highest." One way to do that is to prepend the column names with numbers and 
sort accordingly. This can easily be done using the rename method. After that, we 
sort the columns by using the sort_index method, and setting axis=1, which 
means the columns (as opposed to the index of the DataFrame):

income_share_df = income_share_df.rename(columns={

    'Income share held by lowest 20%': '1 Income share 
held by lowest 20%',

    'Income share held by second 20%': '2 Income share 
held by second 20%',

    'Income share held by third 20%': '3 Income share 
held by third 20%',

    'Income share held by fourth 20%': '4 Income share 
held by fourth 20%',

    'Income share held by highest 20%': '5 Income share 
held by highest 20%'

}).sort_index(axis=1)

2. Check to see that our work is correct:

income_share_df.columns

Index(['1 Income share held by lowest 20%',

       '2 Income share held by second 20%',

       '3 Income share held by third 20%',

       '4 Income share held by fourth 20%',

       '5 Income share held by highest 20%',

       'Country Name', 'year'],

     dtype='object')
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3. We now want to remove the redundant part of the columns and keep the position 
indicator together with "20%." We can use the standard library's re module for that. 
We replace any digit followed by Income share held by with an empty string. 
After that, we change the casing of the resulting string to title case:

import re

income_share_df.columns = [\

re.sub('\d Income share held by ', '', col).title() for 
col in income_share_df.columns

]

4. We now create a variable, income_share_cols, to refer to the columns that we 
are interested in:

income_share_cols = income_share_df.columns[:-2]

income_share_cols

Index(['Lowest 20%', 'Second 20%', 'Third 20%', 'Fourth 
20%', 'Highest 20%'], dtype='object')

5. Now, our DataFrame is ready for plotting with suitable and short names. We first 
create a country variable to use in filtering the DataFrame:

country = 'China'

6. Create the bar chart using px.bar. Note that when setting the value of the x 
parameter, we are using a list. Plotly Express can also work with wide format data, 
which is very convenient in such cases. We could have melted the DataFrame 
and used the approach we used in the previous chapter as well. We also set 
orientation='h' and barmode='stack'. The title will dynamically insert 
the country name, as you can see here: 

fig = \
px.bar(income_share_df[income_share_df['Country 
Name']==country].dropna(),
             x=income_share_cols,
             y='Year',
             hover_name='Country Name',
             orientation='h',
             barmode='stack',
             height=600,
             title=f'Income Share Quintiles - {country}')
fig.show()
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7. You probably noticed that I assigned the result to a variable figure, and that is 
because we have a few minor details to improve. Running the preceding code 
produces the chart in Figure 5.12:

Figure 5.12 – Income shares per quintile, shown using the default options

8. The titles of the x axis, value, and the legend, variable, are not really informative. 
We will modify them, and place the legend keys right under the chart, using their 
logical ascending sequence. This can make it easier for readers to associate the 
values, and for readers on a grayscale interface, it can slightly improve things as well. 
As discussed in Chapter 3, Working with Plotly's Figure Objects, all these attributes 
belong under fig.layout, and setting them is straightforward. Note that the 
legend has the x and y attributes to set its position in the figure. We set the legend's 
x attribute to 0.25 to indicate that we want the legend to start at quarter the distance 
from the origin of the figure:

fig.layout.legend.orientation = 'h'

fig.layout.legend.title = None

fig.layout.xaxis.title = 'Percent of Total Income'

fig.layout.legend.x = 0.25
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9. Running the preceding code for Indonesia produces the final chart in Figure 5.13:

Figure 5.13 – Income shares per quintile, shown using customized options

Let's now put everything together and add the new features to our app.

Incorporating the functionality into our app
We are now ready to again add the new functionality to our app using the function and 
chart we just created. At this stage, not much explanation is required since we have done 
this enough times, but I will go through the main steps, and you can always refer to the 
code repository to check your work:

1. At the top of the module, we first make the DataFrame definitions, as well as 
column changes, as we did. Make sure that the following code is placed after 
creating the poverty DataFrame because it depends on it:

income_share_df =\

poverty.filter(regex='Country Name|^year$|Income 
share.*?20').dropna()

income_share_df = income_share_df.rename(columns={

    'Income share held by lowest 20%': '1 Income share 
held by lowest 20%',

    'Income share held by second 20%': '2 Income share 
held by second 20%',
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    'Income share held by third 20%': '3 Income share 
held by third 20%',

    'Income share held by fourth 20%': '4 Income share 
held by fourth 20%',

    'Income share held by highest 20%': '5 Income share 
held by highest 20%'

}).sort_index(axis=1)

income_share_df.columns =\

[re.sub('\d Income share held by ', '', col).title() for 
col in income_share_df.columns]

income_share_cols = income_share_df.columns[:-2]

2. For the layout part, we require an h2 element as a title for the new section, a 
Dropdown component for countries, and a Graph component, right under the last 
charts we created for the Gini Index section:

dcc.Dropdown(id='income_share_country_dropdown',

             options=[{'label': country, 'value': 
country}

                      for country in income_share_
df['Country Name'].unique()]),

dcc.Graph(id='income_share_country_barchart')

3. The callback function can be easily constructed using the code we just worked 
with, and it ends up as follows:

@app.callback(Output('income_share_country_barchart', 
'figure'),

              Input('income_share_country_dropdown', 
'value'))

def plot_income_share_barchart(country):

    if country is None:

        raise PreventUpdate

    fig =\

px.bar(income_share_df[income_share_df['Country 
Name']==country].dropna(),

    x=income_share_cols,

    y='Year',

    barmode='stack',
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    height=600,

    hover_name='Country Name',

    title=f'Income Share Quintiles - {country}',

    orientation='h')

    fig.layout.legend.title = None

    fig.layout.legend.orientation = 'h'

    fig.layout.legend.x = 0.25

    fig.layout.xaxis.title = 'Percent of Total Income'

    return fig

Adding this code in the right places should add the new functionality to our app. We now 
have multiple indicators that our users can interact with, and several of them provide 
different ways of looking at the data.

The four ways of displaying bar charts can be interesting, but in our case, if we want 
to allow users to compare more than one country, it would quickly become almost 
impossible to read. Going back to our Gini index country chart, for example, each selected 
country typically displays 20 to 30 bars, depending on how much data is available. For 
four countries, we are talking about around 100 bars, on half a page, which is really 
difficult to read.

How about allowing users to select as many countries as they want, and for each selected 
country, a separate chart is produced, so they can see the countries on multiple charts?

This is what faceting is all about, which we will explore next.

Using facets to split charts into multiple  
sub-charts – horizontally, vertically, or 
wrapped
This is a very powerful technique that allows us to add a new dimension to our analysis. We 
can select any feature (column) from our dataset to split the chart by. If you are expecting 
a long explanation of how it works, and what you need to learn to master it, don't. Just like 
most other things in Plotly Express, if you have a long-form (tidy) dataset, all you have to do 
is select a column and use its name for the facet_col or facet_row parameter. That's it.
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Let's take a quick look at the available options for facets by looking at the relevant  
facet parameters:

• facet_col: This means you want to split the chart into columns, and the selected 
column name will be used to split them. This results in the charts being displayed 
side by side (as columns).

• facet_row: Similarly, if you want to split the chart into rows, you can use this 
parameter, which will split the chart into sub-charts displayed on top of one 
another.

• facet_col_wrap: This is really useful when you have a dynamic number of facets 
to produce. If you know your users will be generating multiple charts, after how 
many charts should the following chart be displayed on the next row in the resulting 
grid of charts? The answer should be an integer, and Plotly Express makes sure that 
after that number, the charts are displayed in the next row of charts. This ensures 
that for every row, we have a maximum number of columns of charts.

• facet_row_spacing and facet_col_spacing: As their names suggest, you 
can control the spacing between rows and columns by setting these values in the 
range [0, 1] as a fraction of the total figure size, horizontally or vertically.

Let's run a quick example to make sure this is clear:

1. Create a list of countries to filter by:

countries = ['Algeria', 'Japan']

2. Modify the definition of df to filter the rows where 'Country Name' is in 
countries. The pandas method isin can be used for this:

df =\

gini_df[gini_df['Country Name'].isin(countries)].
dropna(subset=[gini])

3. Run px.bar with the simple addition of facet_row='Country Name':

px.bar(df,

       x='year',

       y=gini,

       facet_row='Country Name')
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Running this code produces the chart in Figure 5.14:

 

Figure 5.14 – Two bar charts generated using the facet_row parameter

4. It's very easy to extend our charts, as you can see, and we also get the sub-charts 
labeled for us with the correct country names. It still doesn't look as good as we 
would like it to be. The y axis titles are overlapping, and you have to look hard at 
the vertical titles to see which sub-chart belongs to which country. So let's improve 
things. Let's first start by modifying the y axis titles, which can be done using the 
labels parameter, by providing a dictionary and mapping the default name to the 
new name that we want:

labels={gini: 'Gini Index'}

5. We can also help the user to quickly identify the charts by coloring the bars by 
country. This will make them distinctive and will also produce a legend with colored 
guides, making it even easier to distinguish the charts. Again this is done by simply 
providing an argument to the color parameter, which is basically a selection of the 
column name that we want to use for that:

color='Country Name' 

6. Another helpful thing would be to add a dynamic title to the figure as a whole. We 
can display the full indicator name, and underneath that, we can show a comma-
separated list of the selected countries. Plotly annotations support some HTML 
tags, and we will use the <br> tag to separate the indicator name and the country 
list as follows:

title='<br>'.join([gini, ', '.join(countries)])
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7. Having two countries on the chart is easy to read, but what if the users decide to 
select seven? As we did with the dynamic height of the Gini index horizontal bar 
chart, we also need to set a dynamic height for the faceted bar charts based on the 
number of selected countries. We will use the same technique, but with different 
values, because we are managing sub-plots, and not horizontal bars:

height=100 + 250*len(countries)

8. The full updated code can be seen here:

px.bar(df,

       x='year',

       y=gini,

       facet_row='Country Name',

       labels={gini: 'Gini Index'},

       color='Country Name',

       title='<br>'.join([gini, ', '.join(countries)]),

       height=100 + 250*len(countries))

9. The final chart can be seen in Figure 5.15, shown for three countries:

Figure 5.15 – Three bar charts generated using the facet_row parameter with customized options
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The figure and function have now been updated to produce faceted charts, based on 
the selected countries. The only remaining change that we have to make is to set the 
dropdown providing the options for this, to allow multiple selections. We will do this 
next, as well as taking a general view of our current dashboard, and see how to improve  
its layout and usability.

Exploring additional features of dropdowns
The Dropdown component has an optional parameter, multi, that takes a Boolean 
argument, which we can set to True to allow this:

dcc.Dropdown(id='gini_country_dropdown',

             multi=True,

             options=[{'label': country, 'value': country}

                      for country in gini_df['Country Name'].
unique()]),

You can now make the changes and use the Gini country bar chart for as many countries 
as you like. The height of that figure on the page dynamically expands/collapses based on 
the dynamic height that we set, so we also don't need to worry about this aspect of the 
layout. The users will manage it themselves while interacting with the components. Let's 
now see whether it's easy for a newcomer to use those options.

Adding placeholder text to dropdowns
If you look at the Gini Index section of the app for the first time, you will see two 
dropdowns that allow you to make a selection, as shown in Figure 5.16:

Figure 5.16 – Dropdowns without any placeholder text

But select what exactly?

The Dropdown component has an optional placeholder parameter, which can be very 
useful for users to know what exactly they are selecting.
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We can easily update our placeholder text for both Dropdown components to make it 
clearer to users:

placeholder="Select a year"

placeholder="Select one or more countries"

We can make it even more explicit by using the Label component from Dash Bootstrap 
Components, which, as the name suggests, provides a label. These labels can be placed 
above the dropdowns:

dbc.Label("Year")

dbc.Label("Countries")

Adding the new options results in the updated messages as shown in Figure 5.17:

Figure 5.17 – Dropdowns with placeholder text and labels

I think it looks easier to use this way. We are also making it clear which one accepts a single 
option, and which accepts multiple ones. We can also do the same for the Income Share 
Distribution section by adding a similar label, Country, and a placeholder, Select a country.

Our app is now getting bigger, and provides many more options. It's good to take a general 
look and see how to improve the overall look and feel of the app, make it easier to use, and 
use a consistent theme across all figures.

Modifying the app's theme
We already saw how easy it is to change the theme of our app, which can be done by 
providing a list as an argument to the external_style_sheets parameter while 
instantiating the app. You can play around with the available ones, and we can set it to COSMO:

app = dash.Dash(__name__,

                external_stylesheets=[dbc.themes.COSMO])

This should modify several visual elements of our app.
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Another thing we can consider doing is making our theme consistent with the theme 
of the charts that we are using. We can set the background color of the app to the same 
default color used in Plotly's figures. Using the style parameter in the top-level html.
Div, we can set the background color to match that of the default Plotly color: 

app.layout = html.Div([

…

], style={'backgroundColor': '#E5ECF6'})

One more change is needed to make this complete.

Plotly's Figure object contains two main areas, the "plot" and the "paper" areas. The plot 
area is the inner rectangle within the x and y axes. In all the charts that we produced, this 
is the area colored light blue (or gray, if you are reading the printed book).

The bigger rectangle enclosing the smaller one is the "paper" area. In the charts we have 
produced so far, it has been colored white. We can also set its color to the same color, 
making all background colors the same for our app. We simply have to add the following 
line to the callback functions that generate charts:

fig.layout.paper_bgcolor = '#E5ECF6'

If we run the app now, we will get some empty figures with a white background for the 
ones where we did not set default values. For those, we also need to create empty figures, 
but set the background colors to be consistent with the whole app theme. Doing this is 
very simple, as we did in Chapter 3, Working with Plotly's Figure Objects. The dcc.Graph 
component has a figure attribute, to which we can add the empty figures with the 
desired background colors. These will be modified when users make a selection. Because 
we have a few instances of those, it's better to create a function that can be used to create 
such figures whenever we want them. The following code achieves that:

import plotly.graph_objects as go

def make_empty_fig():

    fig = go.Figure()

    fig.layout.paper_bgcolor =  '#E5ECF6'

    fig.layout.plot_bgcolor = '#E5ECF6'

    return fig
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Now, we can add the call to make_empty_fig where required, as you can see in the 
following example:

dcc.Graph(id='gini_year_barchart',

          figure=make_empty_fig())

With this, we have chosen a new overall theme and made sure that we have consistent 
background colors across all the elements of our app.

Resizing components
Another thing we need to handle is how the resizing of the browser window affects the 
size and placement of our different components. The figures are responsive by default, but 
we need to make some decisions for the figures that are placed side by side. In the Gini 
Index section, we have two such charts, placed in two dbc.Col components next to each 
other. All we have to do is set the desired size for those charts for large-, lg, as well as 
medium-, md, sized screens: 

dbc.Col([

…

], md=12, lg=5),

When on a large screen, lg, the most likely scenario, each figure will have a size of 5 (out 
of 12), which is how the screen is split by Bootstrap. You can refer to the discussion on 
Bootstrap layouts, columns, and rows, as well as its grid system, in Chapter 1, Overview of 
the Dash Ecosystem, if you want a refresher. On medium-sized screens, md, the figures will 
expand to occupy 12 out of 12 columns, which means that they will take the full width of 
the screen at that size.

When we started learning about interactivity, we created a simple report at the top of our 
app. It displays the population of the selected country/region for the year 2010. We can 
remove this component, as it is very limited in functionality and was mainly used for 
illustration purposes. This can simply be done by deleting the component, together with 
the output area underneath it, as well as the callback that handles it.
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As a result of the work we have done in this chapter, you can see in Figure 5.18 what our 
app now looks like:

Figure 5.18 – The final layout of the app
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I strongly encourage you to make these changes manually yourself, without looking at the 
code provided in the repository. I also encourage you to test out other layouts, play with 
different options, and generate lots of errors!

Making changes all the time and being in control of your code requires a consistent 
naming convention of the components, callbacks, and variables. It also helps if you follow 
a certain logical flow in the organization of your components. We will be doing these 
things many times, and hopefully you will master these techniques along the way.

Our app is now looking better, easier to use, and can even be shared with others if you 
want to. We covered many things in this chapter, taking our app to a new level, so let's 
recap the things that we covered.

Summary
We focused mainly on bar charts in this chapter. We also used Dropdown components 
in several ways. We saw the pros and cons of using horizontal and vertical orientation, 
and we actually implemented both in our app. We then analyzed the different ways in 
which multiple bar charts can be displayed together, and we implemented one showing 
the proportions of a total value. We then explored facets and saw how they enrich our 
figures and make them flexible and scalable. We also linked that to dropdowns, which 
allow multiple selections. After making sure that everything is working fine, we gave our 
app a facelift by choosing a new theme and making sure that all background colors are 
consistent. We also managed the layout for different screen sizes by setting different sizes 
for our figures for different screen sizes. A few helpful messages were added to make the 
app easier to use. Finally, we took a screenshot of the resulting app!

In the next chapter, we will explore one of the most ubiquitous chart types – the scatter 
plot. We will also explore how to use it together with sliders that allow users to select and 
modify values or ranges of values.





6
Exploring Variables 

with Scatter Plots 
and Filtering Subsets 

with Sliders
We are now going to tackle one of the most versatile, useful, and ubiquitous types of 
charts, the scatter plot. As its name implies, we basically scatter markers (which can be 
points, squares, circles, bubbles, or other symbols) on the Cartesian plane, where mainly 
their horizontal and vertical distances express the values they represent. Other visual 
attributes, such as size, color, and symbol, might be used to express other attributes, as 
we saw in some previous examples. As most of the fundamentals regarding figures and 
creating charts have been covered, we won't be spending much time on that, focusing 
instead on the particular details and options available to scatter plots. We will also explore 
and work with sliders as a new interactive component. Let's start right away, but first, here 
are the topics that we will be covering:

• Learning about the different ways of using scatter plots: markers, lines, and text

• Creating multiple scatter traces in a single plot
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• Mapping and setting colors with scatter plots

• Handling over-plotting and outlier values by managing opacity, symbols, and scales

• Introducing sliders and range sliders

• Customizing the marks and values of sliders

Technical requirements
The same tools that we used in the previous chapter will be used here. We will also focus 
a little on Plotly's graph_objects module for creating scatter plots, because it provides 
other tools and is very useful when customizing our plots further. The packages to use 
are Plotly, Dash, Dash Core Components, Dash HTML Components, Dash Bootstrap 
Components, pandas, and JupyterLab.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_06.

Check out the following video to see the Code in Action at https://bit.ly/3ancblu.

We start by exploring the different ways, or the different things, if you want, that we can 
plot with scatter plots.

Learning about the different ways of using 
scatter plots: markers, lines, and text
We have a number of different options when using graph_objects to create scatter 
plots, as mentioned in the introduction, so we will be exploring it together with Plotly 
Express. To give you an idea of the versatility of the available scatter plots, the following 
code extracts all the scatter methods available to the Figure object, as well as those 
available in Plotly Express:

import plotly.graph_objects as go

import plotly.express as px

fig = go.Figure()

[f for f in dir(fig) if 'scatter' in f]

['add_scatter',

 'add_scatter3d',

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_06
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_06
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_06
https://bit.ly/3ancblu


Learning about the different ways of using scatter plots: markers, lines, and text     143

 'add_scattercarpet',

 'add_scattergeo',

 'add_scattergl',

 'add_scattermapbox',

 'add_scatterpolar',

 'add_scatterpolargl',

 'add_scatterternary']

[f for f in dir(px) if 'scatter' in f]

['scatter',

 'scatter_3d',

 'scatter_geo',

 'scatter_mapbox',

 'scatter_matrix',

 'scatter_polar',

 'scatter_ternary']

As you can see, there are some overlaps in the available methods, and there are also some 
methods that aren't available in both modules. We won't go into all of them, but it's good 
to know them, because you can easily utilize your knowledge of regular scatter plots for 
the other types. Let's now take a look at some of the differences between using those 
options. 

Markers, lines, and text
One interesting option that is available in the go.Scatter object is the mode parameter. 
This can take any combination of markers, lines, and/or text. You can specify one, two, 
or all three options together. When specifying more than one option, you have to specify 
them as a single string, where elements are separated by the plus sign, for example, 
"markers+text". Let's first get to know the indicators that we are going to focus on in 
this chapter, and immediately explore the plotting options:

1. Run the required imports and create the poverty DataFrame:

import pandas as pd

import plotly.graph_objects as go

poverty = pd.read_csv('data/poverty.csv')
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2. Our dataset contains three levels of daily income at which poverty is measured. 
They measure "the mean shortfall in income or consumption from the poverty 
line – $1.90 a day". They also have the same measure for two other levels, $3.20 
and $5.50. They are also available as absolute counts in different columns, but we 
will focus on the percentages in this chapter. Their columns start with Poverty gap, 
which we can use as a pattern to extract the columns that we want:

perc_pov_cols =\

poverty.filter(regex='Poverty gap').columns

perc_pov_cols

Index(['Poverty gap at $1.90 a day (2011 PPP) (%)',

       'Poverty gap at $3.20 a day (2011 PPP) (% of 
population)',

       'Poverty gap at $5.50 a day (2011 PPP) (% of 
population)'],   

      dtype='object')

3. To make things simple, we will be starting all related variable names and objects 
with perc_pov_ to make it clear that we are dealing with the poverty percentages. 
Keep in mind that we now have several objects and functions in the app, and we 
want to make sure we keep things simple, clear, and consistent. We now use the list 
we just created to create three variables, one for each poverty level: 

perc_pov_19 = perc_pov_cols[0]

perc_pov_32 = perc_pov_cols[1]

perc_pov_55 = perc_pov_cols[2]

4. As usual, we need to look at the description of those indicators and, most 
importantly, at the limitations that they may have: 
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series[series['Indicator Name']==\

perc_pov_19]['Short definition'][25]

'Poverty gap at $1.90 a day (2011 PPP) is the mean 
shortfall in income or consumption from the poverty 
line $1.90 a day (counting the nonpoor as having zero 
shortfall), expressed as a percentage of the poverty 
line. This measure reflects the depth of poverty as 
well as its incidence. As a result of revisions in PPP 
exchange rates, poverty rates for individual countries 
cannot be compared with poverty rates reported in earlier 
editions.'

5. The definitions are pretty much the same for the three indicators, and the 
limitations are also similar to what we saw in the previous chapter. Feel free to read 
the details, but keep in mind that these are not perfect numbers, and we have to 
be careful if we were to make any interpretations. We now create a variable for a 
country and use it to create a subset DataFrame containing the data for country 
and perc_pov_19:

country = 'China'

df =\

poverty[poverty['Country Name']==country][['year', perc_
pov_19]].dropna()

6. Create a Figure and then add a scatter plot to it, using the relevant method. The 
mode parameter should be given one of the options discussed previously, and it is 
shown here simply as mode:

fig = go.Figure()

fig.add_scatter(x=df['year'],

                y=df[perc_pov_19],

                text=df[perc_pov_19],

                mode=mode)

fig.show()
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Figure 6.1 shows the effect of running the preceding code with each of the possible options 
for mode, with the figure titles showing how to set this option:

Figure 6.1 – Different ways of setting the mode parameter for scatter plots
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You can also see the other options in Figure 6.2:

Figure 6.2 – Other ways of setting the mode parameter for scatter plots

Plotly Express has separate functions for scatter and line plots. You can plot text using 
the scatter function, which can be done by either choosing which column of your 
DataFrame contains the text to plot, or by providing a list of the text elements. The Plotly 
Express scatter function contains a text parameter that can be used for that.

Let's now take a look at how we can utilize this code to create multiple scatter plot traces.
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Creating multiple scatter traces in a  
single plot
We will mostly be focusing on using Plotly Express as much as possible, because of 
its convenience, and the other advantages previously discussed in Chapter 4, Data 
Manipulation and Preparation - Paving the Way to Plotly Express. It's still very important to 
know how to work with Figure objects as you will encounter many situations where you 
will need to work with them, especially when you have a lot of customizations to make. 
Also, keep in mind that although the most important chart types are supported by Plotly 
Express, not all of them are.

Let's extend the preceding chart with traces of other countries and compare the two 
approaches. We start with the graph_objects module's Figure object:

1. Create a countries list to filter with:

countries = ['Argentina', 'Mexico', 'Brazil']

2. Create a subset of poverty, which we will call df, where the values of the 
Country Name column are in the countries list (using the isin method). We 
then extract the year, Country Name, and perc_pov_19 columns and drop 
the missing values:

df = (poverty

      [poverty['Country Name'].isin(countries)]

      [['year','Country Name', perc_pov_19]]

      .dropna())

3. Create a Figure object, assigning it to a variable, fig:

fig = go.Figure()

4. We now want to add a trace for each country that we want to plot. This can be done 
by looping over the countries and creating a sub-DataFrame that contains only data 
for the current country: 

for country in countries:

    df_country = df[df['Country Name']==country]

5. We now add a new trace (within the same loop, and at the same level of indentation) 
by using the add_scatter method. Note that we set mode='markers+lines' 
and we use the name attribute to set the title of this trace in the legend:
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    fig.add_scatter(x=df_country['year'],

                    y=df_country[perc_pov_19],

                    name=country,

                    mode='markers+lines')

6. We also need to add a title for the y-axis, and then we can easily show the figure:

fig.layout.yaxis.title = perc_pov_19

fig.show()

Running the preceding code produces the chart in Figure 6.3:

Figure 6.3 – Creating multiple scatter plots using the graph_objects module

Now, let's compare that to how we would do it with Plotly Express. The code to produce it 
is so short, clear, and intuitive that it barely warrants an explanation:

px.scatter(df, x='year', y=perc_pov_19, color='Country Name')

We chose the value for the data_frame parameter and selected which columns we  
want for the x, y, and color parameters from df. The code then produces the chart in 
Figure 6.4:

Figure 6.4 – Creating multiple scatter plots using Plotly Express
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We also get the axes labeled automatically and the legend labeled properly, and we even have 
a title for the legend, using the column name that we selected for the color parameter.

There is a minor issue though. The disconnected points are not as easy to read as in 
the previous chart. This is especially important in this case because we are expressing 
a sequence of events, and the lines make it much clearer. With interactive dashboards, 
we don't know what our users are going to select, which means that they might produce 
charts that are even harder to read than this one. Plotly Express has separate functions for 
scatter and line plots, so in order to make it a "lines+markers" plot, we need to assign this 
to a Figure object and then add line traces. Here are the steps to do this: 

1. Create a Figure object and assign it to a variable, fig:

fig = px.scatter(df,

                 x='year',

                 y=perc_pov_19,

                 color='Country Name')

2. Create another Figure object, exactly like the previous one, with a different name 
and chart type: 

fig_lines = px.line(df,

                    x='year',

                    y=perc_pov_19,

                    color='Country Name')

3. From fig_lines, we want to add its traces to fig. If you remember, the traces 
can be found under the data attribute of the Figure object. The data attribute is 
a tuple with each element corresponding to a trace. So, we need to loop over those 
traces (of the data attribute) and add them to fig:

for trace in fig_lines.data:

    trace.showlegend = False

    fig.add_trace(trace)

fig.show()

Note that each new line trace will have its label on the legend. So we would have 
redundant line labels in the legend, which we had to remove. We handled that by setting 
the showlegend attribute to False for each of the traces. Running this code produces 
the chart in Figure 6.5:
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Figure 6.5 – Creating multiple scatter and line plots using Plotly Express

Comparing the mental effort and amount of code required to produce the same chart in 
two different approaches, we can see that there wasn't that much of a difference. This is 
typical when you want to produce something customized and/or something good enough 
for publishing. Still, for exploration purposes, Plotly Express is clearly a great starting 
point, and once you get a good idea of the data, you can better decide on which approach 
to adopt.

We have seen an example of implicitly managing color on scatter plots (the colors were 
automatically set or us), and we are now ready to explore more options for managing 
color. If you are reading this on the printed grayscale version, you will see different shades 
of colors that might be distinguishable, but as we did previously, we will also use symbols 
to make it explicit and easy to understand.

Let's now explore the different options that we have for managing color.

Mapping and setting colors with scatter plots
Colors are extremely important in conveying and expressing information about our 
charts. It is also a very big topic, and a full discussion is beyond the scope of this book. 
We will focus on colors for two types of variables – discrete and continuous. We will also 
tackle two ways of using colors in our charts: mapping variables to colors, and manually 
setting our colors. 

We start by exploring the differences between the two types of variables.
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Discrete and continuous variables
Simply speaking, continuous variables are the ones that can take an infinite number of 
possible values in a certain range of numbers. For example, population is a number that 
can take any value, based on the number of people living in a certain country. Continuous 
variables are typically numbers (integers or real numbers). Height, weight, and speed are 
other examples as well.

Discrete variables, on the other hand, are variables that can take the value of any one of a 
limited set of items. Most importantly, discrete variables cannot take values in between the 
items. Countries are one such example. A country can either be country A or country B, 
but can't be 10% A and 90% B. Discrete variables are typically text variables, and usually 
have a relatively small number of unique items.

The way we use color to express the nature of our variables is as follows: 

• For continuous variables, we use a color scale that takes on colors that gradually 
change between two or more colors, as the values they represent change. For 
example, if our color scale starts as white for the lowest value, and ends up as blue  
at the highest value, all values in between would take on varying shades of white 
and blue. A marker that has a color that contains more blue than white means that 
its value is closer to the maximum value of that variable and vice versa. We will try 
this shortly.

• Discrete variables are distinct items, and the colors we use for them need to be as 
distinct from each other as possible, especially the ones that appear next to each 
other. Examples will make this clear, and we start with continuous variables.

Using color with continuous variables
Using the same metric we started with, we want to take an arbitrary year and plot the 
indicator value for each of the countries. We already know how to do this. We now want 
to add a new dimension to our chart. We want to use color to show another value, for 
example, population. This will allow us to see whether there is any correlation between 
population and the metric we are plotting (poverty at $1.90 in this case). Let's prepare our 
variables and data:

1. Create variables for the indicator and year of choice: 

indicator = perc_pov_19

year = 1991
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2. Using the indicator and year, we create a subset of poverty where the year column 
is equal to our variable, year, and the is_country column is True. We then 
drop the missing values and sort the values according to this column. The following 
code achieves this: 

df =\

poverty[poverty['year'].eq(year) & poverty['is_
country']].dropna(subset=[indicator]).sort_
values(indicator)

3. All we have to do is select the column we want for mapping its values to the 
appropriate colors, and we do this as we usually do with Plotly Express: 

px.scatter(df,

           x=indicator,

           y='Country Name',

           color='Population, total')

The preceding code produces the chart in Figure 6.6:

Figure 6.6 – Setting color for continuous variables with Plotly Express

We basically added a new layer to our visualization with the column that we selected. Each 
visual attribute adds another dimension to the chart, and makes it richer, but adding too 
many dimensions might make it overwhelming and difficult to read. It's up to us to strike 
the right balance and make sure we are presenting something meaningful and readable to 
our audience.
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We can immediately see that the country with the highest population in the chart (the 
United States, in bright yellow) has one of the lowest values for our indicator. We can also 
see that since most other markers are closer to purple in color, this shows that the country 
with the highest population has quite an extreme value for that metric compared to the 
others. It seems to be an outlier in population, but not so, with the poverty indicator. The 
popup that appears when we hover over a marker also takes the same color and, being 
much bigger than the marker, makes it very easy to relate the color to its relative position 
on the color bar. The color scale that we have here is only one of tens of scales that we can 
chose from. Changing that is also very easy, and we simply need to provide the name of 
that scale to the parameter, color_scale_continuous. We can see how to do that, as 
well as its effect, in Figure 6.7, where we chose the cividis scale:

Figure 6.7 – Choosing a different continuous color scale

There is no additional information in this chart, only that we changed the color scale to 
a different one. It's intuitive to understand this color scale, as it moves between dark blue 
and bright yellow, and all combinations of colors in between. The scale is also known as a 
"sequential" scale, because it shows how values move from a low to a high value. You can 
get a full list of named color scales by running px.colors.named_colorscales(), 
which will return the names of those scales. More interesting is the option to see all those 
scales and compare them, so you can choose which one you want. You can produce a 
chart with all available scales of a certain type by running px.colors.sequential.
swatches(), and you can see part of the output in Figure 6.8: 
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Figure 6.8 – The first few sequential scales available in Plotly

Another interesting way of showing the color scales in action is by using the 
swatches_continuous functions. For example, Figure 6.9 shows the result of running 
px.colors.sequential.swatches_continuous():

Figure 6.9 – The first few sequential scales available in Plotly as they would appear in a color bar

This gives an even better idea of how they would actually look, and shows colors with 
smooth transitions in between.
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You can use the swatches functions for other types of color scales and sequences. You 
simply run the previous command and replace sequential with any of the following: 
carto, cmocean, colorbrewer, cyclical, diverging, or qualitative.

So far, we have mapped the data values and colors automatically by choosing which 
column's values we want to use for that. There is also the option of manually setting the 
color scales. 

Manually creating color scales
One way of doing this is by providing a list of two or more colors to the color_
continuous_scale parameter. By default, the first color you provide will be 
assigned to the minimum value and the last color to the maximum value. Values in 
between will take combinations, resulting in shades of the two colors. This shows how 
close the data point is to each of the extremes. We'll see an example of using more 
than two colors shortly. Using the same code and setting color_continuous_
scale=["steelblue", "darkorange"] produces the chart in Figure 6.10:

 

Figure 6.10 – Manually setting continuous color scales
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This gives a glimpse of how granular the options are, and this is barely scratching the 
surface of what is available. Sometimes, you may want to rescale your data so the colors 
adopt a smoother progression from the minimum to the maximum. The charts we just 
created are a good candidate for this. We have one outlier when it comes to population, so 
it might be better to set the color parameter to a scaled version of our data if we want to 
do that. In general, because there are numerous scales that are well-established and tested, 
it is better to choose from them instead of manually setting your own colors. Another 
important consideration is color blindness, and trying to use scales that cater for people 
who have it. You don't want to use colors that are indistinguishable by some of your 
readers. You can run a simple check by searching online as to whether or not a color scale 
is colorblind-friendly.

Let's now set a scale that uses three colors. The RdBu (red blue) scale goes from red 
to blue, with mid values taking white as their color. It is one of the default scales. Let's 
quickly plot a simple chart with this scale: 

y = [-2, -1, 0, 1, 2, 3, 4, 5, 6]

px.scatter(x=range(1, len(y)+1),

           y=y,

           color=y,

           color_continuous_scale='RdBu')

We created a list of integers in the range [-2, 6] and mapped their colors to the RdBu scale, 
which produces the chart in Figure 6.11:

Figure 6.11 – Manually setting a continuous diverging color scale
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In this case, you can see the colors moving from red to white to blue, passing through 
the intermediate shades of each color. This is also known as a "diverging" scale. There is 
a midpoint (the white point in this case) where colors diverge, signifying two different 
types of values. Usually, we use this to show values above and below a certain value. In this 
case, we wanted to show negative values in red, zero values in white, and positive values in 
blue. But we didn't get that. The white midpoint was set as the midpoint of the data, which 
happens to be the fifth element of our list, and its value is 2. 

This can be fixed by using the color_continuous_midpoint parameter, as you can 
see in Figure 6.12:

Figure 6.12 – Manually setting a midpoint for a continuous diverging color scale

We now have a more meaningful midpoint, where the divergence in color makes it easy 
to see positive and negative values. Another important thing this achieves is that it also 
shows us how skewed the data is. Note that we don't have any red markers in the chart. 
We have two pinkish ones, while we have more blue values. This perfectly corresponds  
to the list of numbers, which contains two negative, and six positive values. The color  
bar also makes it clear that we are only covering part of the red spectrum, while blue is 
fully covered.

There are many other options for setting colors, scaling the data, and expressing different 
values. I encourage you to learn more about this topic, and the good news is that Plotly 
provides options to customize colors the way you want.

Let's now see how color works with discrete variables. 
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Using color with discrete variables
The objective now is not to visualize the degrees of difference between values. We now 
want to group values based on a criterion and see the differences across those groups of 
values. We can immediately see what happens if we simply set the color parameter to a 
column that has text values. For example, we can set color="Income Group" to get 
the chart in Figure 6.13:

Figure 6.13 – Using color with categorical variables

Everything was automatically handled for us. Simply because we chose a column with text 
values, Plotly Express grouped the data according to that column, and chose a sequence 
of colors that are distinct from one another, so we can see how values change across the 
groups. We also used symbols to make it easier to see, especially on a grayscale version of 
the chart. This was achieved by setting symbol='Income Group'. 
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As with continuous variables, we can also set our own discrete color sequence by 
providing one to the color_discrete_sequence parameter. Figure 6.14 shows the 
effect of setting this parameter, by using one of the sequences provided by Plotly: 

Figure 6.14 – Setting a different color sequence for categorical variables

Note that we have chosen a sequence by getting it from the available list, px.colors.
qualitative.G10, and as you may have guessed, you can generate all the available 
sequences by running px.colors.qualitative.swatches().

As we did with continuous variables, we can also manually set the colors of our discrete 
variables by providing a list of named colors. We can also use the colors' hexadecimal 
representation, for example, #aeae14, or the RGB values, for example, 'rgb(25, 85, 
125)'. Passing our chosen colors to the color_discrete_sequence parameter, we 
get the chart in Figure 6.15:

Figure 6.15 – Manually setting the colors of a sequence for categorical variables
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When you manually select the colors of your choice, you need to make sure that you 
provide a list of colors that has the same number of elements as the unique values of 
the variable you are trying to visualize. Otherwise, it will cycle through the colors you 
provided, and this might be misleading. Again, it's usually better to select from the 
available established sequences, but you can set them manually if you want to. When we 
set the colors that we want, we didn't specify which item should take which color. We 
simply stated that we want the unique values to take this set of colors. Sometimes, you 
may want to explicitly map certain colors to certain categories. Once you know the unique 
values, you can provide a dictionary to the color_discrete_map parameter, and then 
map each value to the color of your choice: 

color_discrete_map={'High income': 'darkred',

                    'Upper middle income': 'steelblue',

                    'Lower middle income': 'orange',

                    'Low income': 'darkblue'}

Setting this option produces the chart in Figure 6.16: 

Figure 6.16 – Manually setting the colors for each value of a sequence for categorical variables

Note that most continuous variable parameters contains "scale," while the discrete ones 
contain "sequence." This can help in remembering and understanding the fundamental 
difference in the process of mapping colors to the two kinds of variables. 

With continuous variables, we are giving the readers the ability to see the approximate 
value of the markers based on the color, as well as the relative position in the dataset. It 
is not clear cut, but you can tell that the population of a certain country is around twenty 
million, and that it looks like it's one of the highest countries in this dataset. Users can, of 
course, hover and get the exact value if they want. With discrete variables, we are basically 
more interested in grouping by those variables and seeing trends across those groups. 



162     Exploring Variables with Scatter Plots and Filtering Subsets with Sliders

We covered a small subset of what can be done with colors, and now we move to consider 
a few other issues that might arise with scatter plots, namely, outliers and having many 
data points to plot.

Handling over-plotting and outlier values by 
managing opacity, symbols, and scales
Let's say we are now interested in seeing the relationship between our variable 
and population for the same year that we have been working on. We want to have 
Population, total on the x-axis, and perc_pov_19 on the y-axis.

We first create a subset of poverty where year is equal to 2010, and is_country is 
True, and sort the values using Population, total: 

df =\

poverty[poverty['year'].eq(2010) & poverty['is_country']].sort_
values('Population, total')

Let's now see what it looks like when we plot those two variables. Here is the code: 

px.scatter(df,

           y=perc_pov_19,

           x='Population, total',

           title=' - '.join([perc_pov_19, '2010']),

           height=500)

Running this produces the chart in Figure 6.17:

Figure 6.17 – Over-plotting and outliers in charts
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The existence of one outlier, China, with a population close to 1.4 billion, forces all 
markers to be squeezed to a very narrow part of our chart. We also have a small cluster of 
values above 25 on the y-axis, but the difference is nowhere as extreme as the horizontal 
one. Another important issue is that there are many markers on top of one another. 
Having solid-colored markers means that if you plot one marker on top of another, it will 
not make any difference; not even a thousand markers will. The existence of the two issues 
together make it a very challenging chart to read. 

We are going to explore a few techniques that might help with these situations, and 
evaluate when and how they might be useful. 

Since we have many points crowded on a very small part of the chart, we are likely to have 
several of them overlapping. Let's see the effect of changing the opacity and size of the 
markers. 

Controlling the opacity and size of markers
The opacity parameter takes values in the range [0, 1], inclusive. We can manually 
give it a number to control how opaque we want our markers to be. A value of 0 means 
completely transparent, which can also be thought of as a way to hide our markers (or a 
subset of them). A value of 1 means the markers will be fully opaque, taking whatever 
color they were assigned, and fully covering the area they are on. This also means that an 
opacity of 0.1 means that the marker will be 10% opaque. The practical implication for 
that is that it means that it will take 10 markers on top of one another to completely cover 
the area they are plotted on. If we set it to 0.5 (or 50%), this means that two markers 
would fully cover the area, and so on.
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Since the markers are quite small, and we don't have that many values, we can also 
increase their size for better visibility. The size parameter, just like all other parameters, 
can take the name of a column in our DataFrame, or a list of numbers. This is another 
visual attribute that we can use to express the values of a certain column where the 
relative sizes reflect the relative value that each marker represents. It is also sometimes 
called a bubble chart. For this case, we want to provide a fixed size. This can easily be 
done by providing a list having the same length as the DataFrame we are analyzing. 
This would give the markers a uniform default size, which might not be what we want, 
so we can control it with the size_max parameter. Reusing the same code and setting 
opacity=0.1, size=[5]*len(df), and size_max=15, we get the chart in  
Figure 6.18:

Figure 6.18 – Modifying the opacity and size of markers

This looks a little better. We have bigger markers, and with an opacity of 0.1, we can 
better see that the majority of markers are concentrated very close to the origin. Most 
likely, there is more nuance than that, but because of the outlier that we have, those 
differences seem very small.

There will always be a trade-off between opacity and visibility. The more transparent your 
markers are, the clearer you can see, especially with hundreds or thousands of markers. 
But at the same time, they might become so transparent that you can't see anything. At 
0.1 opacity, we are approaching that stage.

Let's now take a look at another technique, which involves the use of logarithmic scales for 
the axes.
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Using logarithmic scales
Normal scales are intuitive and easy to understand. Just like physical objects, a piece of 
wood that is twice the length of another one contains twice as much wood, provided it 
is of the same width and depth. In the previous two figures, for example, the distance 
between 0 and 0.2 billion is the same as the distance between 0.2 and 0.4 billion. The "data 
distance" is also the same. On a normal scale, and in this example, every tick corresponds 
to an increase of a certain amount (0.2 billion in this case). On a logarithmic scale, every 
additional tick corresponds to a multiple of the previous one.

For example, the numbers 10, 20, 30, and 40 form a typical sequence that you might see 
on a normal scale. If the scale was logarithmic, we don't add 10; we would multiply by 
10, making the sequence 10, 100, 1,000, and 10,000. Running the same code as we used 
previously and adding log_x=True, we get the updated chart in Figure 6.19:

Figure 6.19 – Using a logarithmic scale

Our chart now looks quite different, but it is still actually the same chart. Note that we 
have changed the opacity to 0.25, because 0.1 was difficult to see, and because we 
now have the markers a lot more dispersed than previously. We now have a much more 
nuanced view of how the population is distributed. We can see that the most opaque part 
is around the ten million mark. Compared to 1.4 billion, this is pretty much zero, which is 
what the previous chart told us, but now we have a better view.

Note that the major ticks are each 10 times larger than the previous one (10k, 100k, 1M, 
10M, 100M, and 1B), or for every major tick we are adding a zero. At the same time, we 
can see minor ticks, 2 and 5, meaning that these positions represent twice and five times, 
respectively, the value of the previous major tick.
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Let's explore another option that we might consider in such situations. We will not use 
any opacity this time, but we will introduce a lot of space to our markers by changing 
the symbol that we use. Setting symbols can be managed exactly like setting discrete 
colors. symbol_sequence is the parameter responsible for that, it will cycle through 
the options that we provide, and then assign one for each unique discrete value in our 
column. We give it a list containing one value, so all markers will have the same symbol.

We now remove the opacity argument and replace it with symbol_sequence= 
['circle_open'] to get the new chart in Figure 6.20:

Figure 6.20 – Modifying the symbols of markers

This might be even better, as we are not sacrificing any visibility by changing the opacity. 
We achieved our objective of seeing where the markers are clustered, because it takes 
a lot of open circles to fully cover an area. The logarithmic scale spreads the markers 
horizontally, so it is easier to see how they are distributed. The tick labels clearly indicate 
the values, but we might need to make it very clear and explicit if our audience is not 
familiar with this kind of scale.
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We can imagine providing users with all the options that we just tried. We can think 
of having a component that allows users to modify the opacity, another component to 
toggle between normal and logarithmic scales, and maybe another to change the symbols. 
Ideally, we shouldn't make it that difficult for users to read our charts. It's best to do the 
work ourselves and provide sensible defaults after having explored the data. Based on what 
we have explored so far, let's consider what those defaults might be.

We know that this chart plots countries, and that they cannot be more than 200. This 
means we can set a default opacity level that is appropriate for that number of markers. 
Having thousands of markers might require a much lower opacity level, such as 0.02, 
for example. Open circles seem to have worked well for us by introducing space, so we 
might also choose that as the default symbol, and forget about opacity altogether. The 
same applies to the size parameter. Knowing that we are plotting population figures, and 
that it is most likely always going to contain outliers, as in this case, we might keep the 
logarithmic scale as the default.

A more general type of interactive chart might allow users to modify the indicators  
that they want to explore. In this case, we might give them those options. However, with 
more freedom and generality, our users will have to handle more of the data handling 
details themselves.

We have established a good understanding of our metrics and seen many examples of 
many countries. This exploration is crucial for building a dashboard with sensible defaults, 
as we just saw. Let's now explore the new interactive components of this chapter – the 
Slider components.
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Introducing sliders and range sliders
The Slider and RangeSlider components are basically circles that users can drag 
horizontally or vertically to set or change a certain value. They are typically used for 
setting continuous values, as their appearance and dragging functionality are a natural fit 
for that. But this is not a requirement as we can use them for categorical/discrete values 
as well. We have seen that we have three levels of our perc_pov_ metrics, and we know 
that we have all the years in our dataset to choose from. We now want to create two 
sliders. One allows users to select the level of poverty that they want to analyze, and the 
other allows them to select the year. Each combination of selections will create a different 
subset, and result in a different chart. Figure 6.21 shows the top part of the end result that 
we will be working toward: 

Figure 6.21 – Two sliders controlling a chart

As you can see, the new functionality requires three main components – two Slider 
components and one Graph component. Of course, we have a few others to control 
the layout, as well as labels, but the focus is mainly going to be on how to create and 
incorporate this new functionality.
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Important note
The RangeSlider component is almost identical to the Slider 
component. The main difference is that it contains more than one handle, so 
users can modify the maximum and minimum points within which they want 
to filter data. For now, we will focus on normal Slider components, and we 
will tackle the RangeSlider component in later chapters.

As always, we will create this as a standalone app in JupyterLab, and once it is working 
fine, we will add it to the app. Let's start first by getting to know the Slider component, 
how it works, and then create the layout of our app. 

You can create a minimal app and, within the app's layout, create the Slider component, 
just like you do with other components, by calling dcc.Slider():

app = JupyterDash(__name__)

app.layout = html.Div([

    dcc.Slider()

])

app.run_server(mode='inline')

This will create a simple app with a single component, as you can see in Figure 6.22: 

Figure 6.22 – A bare-bones slider component

This is visually easy to use, and it's clear that users can slide the circle horizontally. There 
are no guides however, and users don't know what values they are modifying, so let's fix 
that. We will start by creating our first slider, containing the three poverty levels that we 
are analyzing. Let's take a look at the parameters that we are going to use for this: 

• min: As the name suggests, this is the minimum value of the slider.

• max: This also sets the upper limit for the values.

• step: As we go (slide) from min to max, what should the increment size be? By 
default, it is set to 1, but you can set it to a higher or lower value. For example, if you 
wanted users to manage opacity, you can set min=0, max=1, and step=0.01. This 
would give users 100 options to choose from.
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• dots: Should the slider display dots or should it be a simple line? In our case, we 
want users to choose between three distinct values, so it makes sense to set this 
option to True.

• included: Note that the slider in Figure 6.22 is light blue to the left of the handle, 
and gray to its right. As you slide, the blue part expands/contracts with the handle, 
which is the default behavior. In our case, we are giving the user three distinct options, 
so we want to remove this to emphasize this fact, so we set its value to False. 

• value: This is the default value that the slider should take.

Here is an example of a Slider component that ranges from 0 to 10: 

dcc.Slider(min=0,

           max=10,

           step=1,

           dots=True,

           included=False)

This produces the new slider in Figure 6.23:

Figure 6.23 – A slider component with custom options

The dots now guide users on where they can select, and it hints that the options are 
distinct from one another, especially that we set included=False.

Another crucial parameter that Slider takes is the marks parameter. We need to show 
users what each dot corresponds to. In some cases, we might not have enough space to 
display all values, in which case we skip some of the values. We will do this in our years 
slider, but first let's create the poverty indicator slider. We first do it without the marks 
parameter, and then add it after that:

dcc.Slider(id='perc_pov_indicator_slider',

           min=0,

           max=2,

           step=1,

           value=0,

           included=False)
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For id, as with other variables, we followed the rule of starting with perc_pov_ to be 
consistent with other related objects in the app. The values that the callback function 
will receive from this component are going to be 0, 1, and 2, and this is based on the 
min, max, and step arguments we gave. Now, those values don't mean anything in our 
situation, because we actually want the full text of the name of the indicator. We can 
simply handle this by taking the value of the slider and using it as the index for the  
perc_pov_cols list that we created. In our callback function, we will use this integer 
value to extract the respective indicator. We will see this later when we construct our 
callback function. Let's now create the marks for our slider.

Customizing the marks and values of sliders 
The simplest way to create these is by using a dictionary: {0: '$1.9', 1: '$3.2', 
2: '$5.5'}. They keys will be used as the value attribute, and the values of the 
dictionary are what the user will see for each poverty level. This will suffice for our case, 
and we can use it as such.

We optionally have the chance to customize the style of our labels, which can take any CSS 
attribute as a dictionary. If you look at Figure 6.21, you can see that the marks (numbers) 
of the two sliders have a very light color, and they might give the impression that they 
belong to the same slider. We can improve this by setting their colors to a dark color. We 
can also set a bold font for the indicator slider. This will help distinguish them from the 
years, and it will also emphasize their uniqueness. Years are easy to immediately grasp, but 
users are most likely not familiar with the levels of poverty tracked in the dataset. 

We want to get a color that is consistent with our charts. And since we will be using the 
cividis color scale, it's a good opportunity to get to know how we can extract its colors. 
The px.colors.sequential module contains, among other things, lists of the colors 
of the sequential color scales. We can get cividis by running the following command:

px.colors.sequential.Cividis

['#00224e',

 '#123570',

 '#3b496c',

 '#575d6d',

 '#707173',

 '#8a8678',

 '#a59c74',

 '#c3b369',
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 '#e1cc55',

 '#fee838']

The list we receive contains the 10 colors that are actually used to construct this scale. 
Recall that we tried this manually with 2 and 3 colors. It's also interesting to know that 
you can get the reversed version of a scale by appending _r to its name, for example, 
px.colors.sequential.Cividis_r. This would give us the same scale, but the 
yellow would correspond to the lower values in this case.

Now, the color that we want to use for the labels of the marks is going to be the darkest 
one in cividis, which we can easily extract and assign to a variable as follows:

cividis0 = px.colors.sequential.Cividis[0]

Using this, we can now set our marks argument as follows:

marks={0: {'label': '$1.9', 'style': {'color': cividis0, 
'fontWeight': 'bold'}}, 

       1: {'label': '$3.2', 'style': {'color': cividis0, 
'fontWeight': 'bold'}},

       2: {'label': '$5.5', 'style': {'color': cividis0, 
'fontWeight': 'bold'}}}

What we did was basically extend the dictionary, where, instead of strings as values, we 
added dictionaries in the following form:

 {'label': <label>, 'style': {<attribute_1>: <value_1>, 
<attribute_2>: <value_2>}

Important note
In general, CSS attributes such as font-size and font-weight 
are hyphen-separated, and written in lowercase. In Dash, you can use the 
same attributes, but you have to remove the hyphens, and use camelCase 
(fontSize and fontWeight), as you can see in the previous code 
snippet.

Similar to what we just did, let's now create the other slider with similar customizations. 
First, and in order to isolate our subset, we can create a special DataFrame for  
these variables:
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perc_pov_df =\

poverty[poverty['is_country']].dropna(subset=perc_pov_cols)

perc_pov_years = sorted(set(perc_pov_df['year']))

The important thing is that we removed any missing values from perc_pov_cols, and 
we also created a sorted list of unique years, perc_pov_years, using sorted and set. 

The following code creates our new slider for the years: 

dcc.Slider(id='perc_pov_year_slider',

           min=perc_pov_years[0],

           max=perc_pov_years[-1],

           step=1,

           included=False,

           value=2018,

           marks={year: {'label': str(year),

                         'style': {'color': cividis0}}

                  for year in perc_pov_years[::5]})

This is pretty much the same as we did for the indicators. We set the default to 2018, 
which is the latest year for which we have data. If this was a dynamically updated app, we 
can also set this value to the maximum of perc_pov_years. Note that we set the marks 
to show only one in five years. Otherwise, the slider would be very difficult to use. With 
this, we can see the slight difference in fonts and colors in Figure 6.24:

Figure 6.24 – Sliders with updated colors

The final part of our layout is going to be the Graph component:

dcc.Graph(id='perc_pov_scatter_chart')

As I mentioned before, we also have Label components, as well as Col and Row 
components to better manage the layout, but they weren't discussed, as we have already 
created several examples using them. 
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We are now ready to create our callback function to link the three elements that we  
just created:

1. We first create the decorator of the function. This is straightforward, as we did with 
previous examples. The slight difference is that we have two inputs in this case. In 
the definition of the function, the order of the parameters will correspond to the 
order of the Input elements, so we will name them accordingly:

@app.callback(Output('perc_pov_scatter_chart', 'figure'),

              Input('perc_pov_year_slider', 'value'),

              Input('perc_pov_indicator_slider', 
'value'))

2. In the next part, we create the function's signature, as well as the first few lines. The 
parameters are named year and indicator. We now use the indicator value 
(which is an integer) to get the corresponding element from perc_pov_cols. 
We then create the variable df, which filters perc_pov_df to only have values 
from year. Then, define we dropna and sort_values. There was a year that 
didn't have any data, but had to be included in the values of the slider, so we need 
to handle the case when/if users select it. This is done using the simple check if 
df.empty, as you can see here:

def plot_perc_pov_chart(year, indicator):

    indicator = perc_pov_cols[indicator]

    df = (perc_pov_df

          [perc_pov_df['year'].eq(year)]

          .dropna(subset=[indicator])

          .sort_values(indicator))

    if df.empty:

        raise PreventUpdate

3. Now that we have our DataFrame ready, we can create the Figure and return it. 
Most of the code should now be familiar. The hover_name parameter is used to 
add a title to the popup when users hover over markers. Setting it to Country 
Name would cause the title to take the respective country's name and display it 
in bold. We also utilized the same dynamic height trick that we used in the last 
chapter, where we set a fixed height, and added 20 pixels for each country. The 
ticksuffix option we added at the end should be self-explanatory, to make it 
clear that these are percentages:
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fig = px.scatter(df,

                 x=indicator,

                 y='Country Name',

                 color='Population, total',

                 size=[30]*len(df),

                 size_max=15,

                 hover_name='Country Name',

                 height=250 +(20*len(df)),

                 color_continuous_scale='cividis',

                 title=indicator + '<b>: ' + f'{year}' 
+'</b>')

fig.layout.paper_bgcolor = '#E5ECF6'

fig.layout.xaxis.ticksuffix = '%'

return fig

Adding the layout elements and callback to our app, we finally get the additional 
functionality in the form of two sliders that can generate more than 130 charts through 
their combinations. Figure 6.25 shows the final result:

Figure 6.25 – Two sliders and a scatter plot – final result

Congratulations on yet another addition to your app! This time, we created our first 
multiple input callback, which enriched the options that users can generate, without being 
complicated or overwhelming. 
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From a functionality perspective, there is nothing really different between dropdowns and 
sliders. We could have implemented the same thing with dropdowns, and it would have 
worked fine. The advantage of dropdowns is that they are extremely efficient in terms of 
space utilization. A small rectangle can contain tens or even hundreds of hidden options 
that users can search. Those options can be very long strings that may be impossible to fit 
next to each other, on a slider, for example.

On the other hand, sliders give a better perspective. They implicitly contain metadata 
about the options. You can immediately see the minimum and maximum points, and how 
widely they are spread. When you select an option, you can easily tell how extreme your 
choice was relative to the other options that are available. In the case of the poverty level 
slider, users can see all available options immediately. And finally, sliders are more similar 
to how we interact with physical objects, so playing with them might be more engaging 
than other interactive components. So, space restrictions, the types of variables that we are 
analyzing, and how we want to display them are some considerations that affect our choice 
of interactive components that we decide to utilize.

You probably noticed that we are focusing less on how to put things together in the app, 
and that's intentional. We have already covered these topics several times, and it is designed 
to also encourage you to do them yourself and experiment with other options. You can 
always refer back to the code repository to check your work and for the minor details.

Let's now recap what we have covered in this chapter.

Summary
We introduced scatter plots and saw how to create them, both using the graph_objects 
module, and using Plotly Express. We saw how to create multiple traces and tried different 
approaches for that. We then discussed color mapping and setting and explored how 
different the process is for continuous and discrete (categorical) variables. We saw different 
scales – sequential, diverging, and qualitative. We also saw how we can set our own colors, 
sequences, and scales. We also tackled some issues that arise when we have outliers, and 
when we have over-plotting. We experimented with opacity, changing symbols, and 
marker sizes, as well as using logarithmic scales to make our charts more readable. We also 
introduced sliders and learned how they work, and created two sliders that work together 
to generate charts expressing three values (as opposed to two values previously). We then 
created a callback function that managed those interactions and integrated it into our app.
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By now, and with all the examples and techniques covered, we are getting closer to the 
point of creating dashboards in the same way as we create slideshows and presentations. 
Once we master the layout elements, it's very easy to customize any size and position 
we want. And now that we are exploring different chart types and data visualization 
techniques, it will become easier to manage things and modify them the way we want.

All the charts we have explored so far used regular geometric shapes, including circles, 
lines, and rectangles. In the next chapter, we will explore irregular shapes, and how to 
visualize them, in the form of maps. Maps are very engaging, and easily recognizable, yet 
not so straightforward to visualize, like simple regular shapes. This will be explored next.





7
Exploring Map Plots 
and Enriching Your 

Dashboards with 
Markdown

In this chapter, we are going to explore how to handle maps, one of the most engaging types 
of charts. There are many ways of creating and handling maps, as well as many types of map 
plots. There are also many specialized geographic and scientific applications for maps. We 
will mainly be focusing on two of the most common types of map plots: choropleth map 
plots and scatter map plots. Choropleth maps are the type of maps we are most familiar 
with. These are the types of maps where geographical areas are colored to indicate a country, 
state, district, or any arbitrary polygon on a map, and express variations in quantity among 
them. Most of the knowledge we established in the previous chapter can easily be adapted to 
scatter map plots, as they are essentially the same, with a few differences. Similar to the x and 
y axes, we have longitude and latitude instead, and we also have different map projections. 
We will also learn about a new component, Markdown, from Dash Core Component.

Then, we will explore how to use Mapbox, which provides a rich interface with different 
layers, themes, and zoom levels. It also allows us to create choropleth and scatter map plots.
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We will mainly cover the following topics: 

• Exploring choropleth maps

• Utilizing animation frames to add a new layer to your plots

• Using callback functions with maps

• Creating a Markdown component

• Understanding map projections

• Using scatter map plots

• Exploring Mapbox maps

• Exploring other map options and tools

• Incorporating an interactive map into our app

Technical requirements
We will use similar tools to the ones we used in the previous chapter. We will mainly be 
using Plotly Express for creating our charts. The packages to use are Plotly, Dash, Dash 
Core Components, Dash HTML Components, Dash Bootstrap Components, pandas, and 
JupyterLab.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_07.

Check out the following video to see the Code in Action at https://bit.ly/3sAY8z8.

We'll start by exploring how easy it is to create choropleth maps for countries.

Exploring choropleth maps
Choropleth maps are basically colored polygons representing a certain area on a map. 
Plotly ships with country maps included (as well as US states), and so it is very easy to plot 
maps if we have information about countries. We already have such information in our 
dataset. We have country names, as well as country codes, in every row. We also have the 
year, some metadata about the countries (region, income group, and so on), and all the 
indicator data. In other words, every data point is connected to a geographical location. 
So, let's start by choosing a year and an indicator, and see how the values of our chosen 
indicator vary across countries:

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_07
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_07
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_07
https://bit.ly/3sAY8z8
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1. Open the poverty file into a DataFrame and create the year and indicator 
variables:

import pandas as pd

poverty = pd.read_csv('data/poverty.csv')

year = 2016

indicator = 'GINI index (World Bank estimate)'

2. Create a subset of poverty with values from the selected year and containing 
countries only:

df = poverty[poverty['is_country'] & poverty['year'].
eq(year)]

3. Create a choropleth map using the choropleth function from Plotly Express, by 
choosing the column that identifies the countries and the column that will be used 
for the colors:

import plotly.express as px

px.choropleth(df, locations="Country Code", 
color=indicator)

You can see the result of the preceding code in Figure 7.1:

Figure 7.1 – A choropleth map of countries
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The country codes we provided were already included in Plotly, and are in the three-letter 
ISO format. As with scatter plots, you can see that since we provided a numeric column 
for the color, a continuous color scale was chosen. Otherwise, we would have gotten a 
discrete color sequence. For example, setting color='Income Group' would produce 
the chart in Figure 7.2:

Figure 7.2 – A choropleth map of countries with a discrete color sequence

As you can see, and similar to what we saw in Chapter 6, Exploring Variables with Scatter 
Plots and Filtering Subsets with Sliders, the color system works in a similar way.

We can also use normal country names to plot them. To do that, we only need to set 
locationmode='country names' and the rest works the same. Here is an example 
with country names:

px.choropleth(df, 

              locations=['Australia', 'Egypt', 'Chile'], 

              color=[10, 20, 30], 

              locationmode='country names')



Utilizing animation frames to add a new layer to your plots     183

This creates the chart in Figure 7.3:

Figure 7.3 – A choropleth map of countries using country names

The title of the color bar is color because it is not clear what it is, and it is not a name 
of a column in a DataFrame. We can rename it by setting labels={'color': 
<metric_name>} to indicate what the metric is in our case. Let's now see how we can 
make the chart interactive (without using a callback).

Utilizing animation frames to add a new layer 
to your plots
In the last examples, we set the year as a variable and got a snapshot of the desired 
indicator for that year. Since the years represent sequential values, and can also be used 
as a grouping variable, we can use the years in the animation_frame parameter and 
make the chart interactive. This would introduce a new handle underneath the chart, 
where users can either drag to the desired year or press the play button to watch how the 
respective indicator progresses throughout the years. It would be a sequence of frames, 
like watching a video. What this does is that for a selected year, we will get a subset of the 
DataFrame where the rows in the year column are equal to the selected year. The chart 
automatically updates with colors corresponding to the values of the year that was chosen. 
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Here is the updated code to produce an animated chart (by year): 

fig = px.choropleth(poverty[poverty['is_country']],|

                    color_continuous_scale='cividis',

                    locations='Country Code',

                    color=indicator,

                    animation_frame='year')

fig.show()

We can now see the updated chart in Figure 7.4: 

Figure 7.4 – A choropleth map of countries with an animation frame

As you can see, all we had to do is select a column name to use for animation_frame, 
and everything is handled for us. We used a DataFrame where we only have countries, 
which includes all years. The further sub-setting is done automatically by the argument 
given to animation_frame. We can drag the handle to a specific year or press the play 
button and watch how it changes over time. Note that we also changed the color scale to 
experiment with a different one. Both color scales used so far should also be readable on a 
grayscale version of the map.

Now that we have a basic map in place, let's explore what options we have to control 
several aspects of the map. The layout attribute of map charts has a sub-attribute called 
geo, under which there are several useful geographic attributes that allow us to control 
many aspects of our maps. These attributes work the same way as other attributes.
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We basically set them by running fig.layout.geo.<attribute> = value to  
set the desired value. Let's explore some of these attributes and their effects on the 
previous chart:

• Remove the rectangular frame around the map:

fig.layout.geo.showframe = False

• Show the country borders, even if/when we don't have data for some countries:

fig.layout.geo.showcountries = True

• Use a different projection of the Earth. Select the natural earth projection type 
(more on this later):

fig.layout.geo.projection.type = 'natural earth'

• Limit the vertical range of the chart to focus more on countries, by setting the 
minimum and maximum latitude values that the map should show:

fig.layout.geo.lataxis.range = [-53, 76]

• Limit the horizontal range of the chart using the same technique: 

fig.layout.geo.lonaxis.range = [-137, 168]

• Change the color of the land to 'white' to make it clear which countries have 
missing data:

fig.layout.geo.landcolor = 'white'

• Set the background color of the map (the color of the oceans), as well as the "paper" 
background color of the figure as a whole. Use the same color that we are using for 
the app to have a consistent theme: 

fig.layout.geo.bgcolor = '#E5ECF6'

fig.layout.paper_bgcolor = '#E5ECF6'

• Set the colors of the country borders as well as the coastlines to 'gray':

fig.layout.geo.countrycolor = 'gray'

fig.layout.geo.coastlinecolor = 'gray'
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• Since the title of the color bar is taking up a lot of horizontal space, replace spaces 
with the <br> character, to split it to multiple lines:

fig.layout.coloraxis.colorbar.title =\

indicator.replace(' ', '<br>')

As a result, we get the updated chart in Figure 7.5: 

Figure 7.5 – A choropleth map of countries with custom geo options

With a few commands, we have transformed how our chart looks. We restricted the 
ranges to focus mainly on countries and land, as much as possible. We also set consistent 
background colors and displayed country borders. There are several other options that can 
easily be explored under the fig.layout.geo attribute. We are now ready to make the 
indicator selection dynamic; let's see how.

Using callback functions with maps
What we have done so far was done with one indicator, and we used this indicator to 
select the desired column from the dataset. We can easily create a dropdown to allow users 
to choose any of the available indicators and let them explore the whole dataset. The year 
variable is already interactive and part of the chart, as used by the animation_frame 
parameter. So, this can become the first exploratory interactive chart that users start 
with on our app, to help them get an overview of the available metrics and how they are 
changing in time.
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Setting this up is straightforward, as we did several times. We will implement it, and after 
that, we will see how to use the Markdown component to add context around/about the 
map chart and the chosen indicator.

Let's do the necessary steps to implement this functionality independently in JupyterLab: 

1. Create a Dropdown component, where the available options are the column names 
of poverty, using the columns between the third and 54th columns:

dcc.Dropdown(id='indicator_dropdown',

             value='GINI index (World Bank estimate)',

             options=[{'label': indicator, 'value': 
indicator}

                      for indicator in poverty.
columns[3:54]])

2. Create an empty Graph component, right under the dropdown we just created: 

dcc.Graph(id='indicator_map_chart')

3. The indicator names vary in length, and some of them are so long that they take  
up almost half the screen size. We can handle this in a similar way to what we  
did previously, by creating a simple function. The function takes a string, splits  
it into words, groups every three words together, and then joins them with the  
<br> character:

def multiline_indicator(indicator):

    final = []

    split = indicator.split()

    for i in range(0, len(split), 3):

        final.append(' '.join(split[i:i+3]))

    return '<br>'.join(final)

4. Create a callback that links the dropdown with the map chart: 

@app.callback(Output('indicator_map_chart', 'figure'),

              Input('indicator_dropdown', 'value'))
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5. Define the function that takes the selected indicator and returns the desired  
map chart. Note that we set the title of the figure by using the indicator as its  
value. We also used the Country Name column to set the hover name, which  
is the title of the box that appears when users hover over a certain country. The 
height was also set to 650 pixels. The remaining geo properties were omitted  
here to avoid repetition, but they are the same as we set them previously. We  
also modify the color bar title, using the multiline_indicator function we 
just created:

def display_generic_map_chart(indicator):

    df = poverty[poverty['is_country']]

    fig = px.choropleth(df,

                        locations='Country Code',

                        color=indicator,

                        title=indicator,

                        hover_name='Country Name',

                        color_continuous_scale='cividis',

                        animation_frame='year',

                        height=650)

    fig.layout.geo.showframe = False

    …

    fig.layout.coloraxis.colorbar.title =\

multiline_indicator(indicator)

Running the app in JupyterLab, you can explore the different metrics. Figure 7.6 shows a 
few examples of charts produced by selecting different indicators and years:
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Figure 7.6 – Examples of map charts produced interactively

Once given the option, users can search the dropdown for various keywords and select 
what they find interesting. It is still not very clear what exactly many of these indicators 
refer to and what their limitations might be. This is a good opportunity for us to display 
those details to users, to make it clear what they are looking at. As mentioned previously, 
the limitations in measurement are crucial to highlight, so users are aware of them. Let's 
see how we can add formatted text using the Markdown component.
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Creating a Markdown component
Markdown is a way to produce HTML in a manner that is easy to write and also easy to 
read. The output would be displayed as any HTML document would, but the process of 
writing it and reading it is much easier. Compare the following two snippets, which result 
in the same HTML output: 

Using pure HTML, we would write the following: 

<h1>This is the main text of the page</h1>

<h3>This is secondary text</h2>

<ul>

  <li>first item</li>

  <li>second item</li>

  <li>third item</li>

</ul>

The same code can be written with Markdown as follows: 

# This is the main text of the page

### This is secondary text

* first item

* second item

* third item

I think it's clear that Markdown is much easier to write, as well as to read, especially when 
you have nested items such as the <ul> unordered list we have here.

The Markdown component works the same way. The preceding code simply has to 
be passed to the children argument, which would render it as the HTML shown 
previously. Let's create a minimal app in JupyterLab to see how the Markdown 
component works:

1. Make the necessary imports and instantiate an app:

from jupyter_dash import JupyterDash

import dash_core_components as dcc

app = JupyterDash(__name__)
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2. Create the layout attribute of the app:

app.layout = html.Div([])

3. Pass the Markdown component with the preceding text to the div just created. 
Note that it is easier to use triple quotes especially when using multiline text: 

dcc.Markdown("""

# This is the main text of the page

### This is secondary text

* first item

* second item

* third item

""")

4. Run the app:

app.run_server(mode='inline')

The preceding code creates a mini-app with its output shown in Figure 7.7:

Figure 7.7 – A sample output of the Markdown component

Markdown has several other ways of displaying text, such as numbered lists, tables, 
links, bold and italic text, and more. We will be covering some of these features, but they 
are easy to pick up in case you are not familiar with them. Keep in mind that there are 
various "flavors" of Markdown used by different platforms. You might come across slightly 
different markup/syntax rules but in general, there is a lot of overlap.
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We will now add some information to the map that the user generates after selecting the 
metric of their choice. Basically, we will add the important information right underneath 
the map and slider. Figure 7.8 shows how this will look, in order to give you an idea of 
what we are working toward:

Figure 7.8 – A sample of the Markdown component

All the text and formatting you see in the figure are produced by the Markdown 
component. 

In order to create a special area for it on the app, we simply add a Markdown component 
under the map, giving it a unique ID. 

Producing this component will happen in the same callback we created to generate the 
map. The callback should now take two Output elements instead of one, and when 
returning, it should return two elements as well (the figure, as well as the Markdown 
generated). To get the required content for this component, we need to open the 
file that contains all the details about the indicators. This has been done previously, 
but as a reminder, we can get it by running series = pd.read_csv('data/
PovStatsSeries.csv'). Let's now implement these steps:

1. Right under the Graph component, add the new Markdown component (note that 
we also set its background color to be consistent with the map, as well as the whole 
app). The _md suffix is for Markdown: 

dcc.Markdown(id='indicator_map_details_md',

             style={'backgroundColor': '#E5ECF6'})
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2. Update the callback function by including the new component: 

@app.callback(Output('indicator_map_chart', 'figure'),

              Output('indicator_map_details_md', 
'children'),

              Input('indicator_dropdown', 'value'))

3. After finishing the definition of the fig variable in the callback function, we now 
run the necessary steps for creating the Markdown output. Create the appropriate 
subset of series, by getting the row where the Indicator Name column is 
equal to the selected indicator:

series_df =\

series[series['Indicator Name'].eq(indicator)]

4. Extract the value of the Limitations and exceptions columns from 
series_df. Note that since some values are missing and since missing values are 
not strings, we fill them with the string N/A, and we also replace any instances of 
two newline characters, \n\n, with a single space, if any. We then extract the first 
element under its values attribute:

limitations =series_df['Limitations and\

exceptions'].fillna('N/A').str.replace('\n\n',\

' ').values[0]

5. Now that we have defined two variables, series_df and limitations, we 
will use Python's f-string formatting to insert variables where they belong using 
curly braces: f '{<variable_name>}'. We first insert the indicator name using 
an <h2> element. Headings in Markdown correspond to their HTML equivalents, 
where the number of hash signs corresponds to the heading level. Here we use two 
signs for <h2>:

## {series_df['Indicator Name'].values[0]}  

6. Now we add the long description in regular text, without any hash signs before it: 

{series_df['Long definition'].values[0]}
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7. Next, we add the bullet points for Unit of measure, Periodicity, and 
Source. Bullet points can be created by adding a star at the beginning of the line 
for each bullet point. This is a simple process of getting the right element from the 
right column. Note that we fill missing values for Unit of measure by using 
the word count, which will replace the missing values where the indicator is a 
simple count and not a percentage. Population is one such example. In the case 
of Periodicity, we simply replace it with N/A wherever the respective value 
is missing. The stars before and after any text make it bold, similar to running 
<b>text</b>:

* **Unit of measure** {series_df['\

Unit of measure'].fillna('count').values[0]}

* **Periodicity**\

{series_df['Periodicity'].fillna('N/A').values[0]}

* **Source** {series_df['Source'].values[0]}

8. Add the Limitations and exceptions subtitle in <h3>:

### Limitations and exceptions:  

9. Next, we add the already created limitations variable in regular text:

{limitations}  

Putting the preceding code together, here is the full code that creates our Markdown 
component, with its relative position in the callback function. Note that in some cases, 
there are a few indicators that don't have details in the series DataFrame. In this 
case, we set the Markdown variable to a string, indicating the lack of such details. This 
condition can be seen in the following code as well, in the check to series_df.empty; 
otherwise, everything runs as previously:

…

fig.layout.coloraxis.colorbar.title =\

multiline_indicator(indicator)

series_df = series[series['Indicator Name'].eq(indicator)]

if series_df.empty:

    markdown = "No details available on this indicator"

else:

    limitations = series_df['Limitations and exceptions'].
fillna('N/A').str.replace('\n\n', ' ').values[0]
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    markdown = f"""

    ## {series_df['Indicator Name'].values[0]}  

    {series_df['Long definition'].values[0]}  

    * **Unit of measure** {series_df['Unit of measure'].
fillna('count').values[0]}

    * **Periodicity**

{series_df['Periodicity'].fillna('N/A').values[0]}

    * **Source** {series_df['Source'].values[0]}

    ### Limitations and exceptions:  

    {limitations}

"""

return fig, markdown

We finally return a tuple of fig, markdown instead of only fig as we did in the 
previous version. Adding this code to the app would add the respective Markdown to the 
map and give it much better context, as well as pointing out the limitations that our users 
need to keep in mind.

We will now turn to see the different projections that maps can be displayed in, and how 
we can change them.

Understanding map projections
We used an example of one projection type in our map, and now we'll explore this topic  
in more detail. When we try to draw the Earth (or part of it) on a flat rectangle, the  
shape is inevitably distorted somehow. So, there are different ways, or projections, 
available that can be used. No projection is perfect, and there are trade-offs between 
accuracy in shape, area, relative position, and so on. The details of which projection is 
more appropriate depends on the application and is beyond the scope of this book. We 
will, however, explore how to change the projection being used and see how to get the  
available projections.

With Plotly Express, we have a projection parameter in the map functions, which 
takes a string and can be used to set the desired projection type. Alternatively, we can  
also set it by assigning a value to fig.layout.geo.projection.type as we  
did previously.
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Figure 7.9 shows a few of the available options together with their respective names in  
the titles:

Figure 7.9 – A sample of the available map projections

As you can see, there are different ways of displaying the Earth. While orthographic 
might seem more realistic in its shape, its problem is that we can only see part of the 
Earth, so we lose perspective. The azimuthal equal area projection is actually quite 
realistic when you use it interactively and zoom into certain areas. Feel free to experiment 
with different projections and select what works for you.

We have experimented with polygon or choropleth maps so far, and now we will  
be exploring another type of map, with which we are already generally familiar: the  
scatter map.
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Using scatter map plots
The main difference between the x and y axes and longitude and latitude is due to the 
shape of the Earth. As we approach the equator, the vertical meridians are as far away 
from each other as possible, and as we approach the North and South poles, they are as 
close as possible to each other. Figure 7.10 shows this: 

Figure 7.10 – A map of the Earth, showing longitude and latitude lines

In other words, as we approach the equator, we have a more rectangular shape, because 
a unit of longitude is close to a unit of latitude. Close to the poles, the proportions 
are completely different, and the rectangles start to approximate triangles. This is in 
contrast to a rectangular plane, where a vertical unit of distance corresponds to the same 
horizontal unit of distance, regardless of where you are on the plane. This assumes a 
linear scale on both axes, of course. An exception to this is the logarithmic axis, which 
we covered in Chapter 6, Exploring Variables with Scatter Plots and Filtering Subsets with 
Sliders. Map projections handle this for us, and we don't have to worry about this issue. So, 
we can simply think of them as we think about the x and y axes and select the projection 
that we want.

Let's see how we can make a scatter map plot with Plotly Express using the scatter_
geo function.
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We start with a very simple example:

df =\

poverty[poverty['year'].eq(2010) & poverty['is_country']]

px.scatter_geo(df, locations='Country Code')

First, we created df, where the year is equal to 2010, and we filtered out non-countries. 
Then, just like we did with choropleth maps, we selected the column to use for the 
locations parameter. This generates the simple chart in Figure 7.11: 

Figure 7.11 – A scatter map using the scatter_geo function

You can see how easy it is to do so. There is not much information in this chart, other than 
markers on countries, showing the Country Code value.

The country names are supported by default by Plotly. Another interesting application 
might be to use the lat and lon parameters to plot arbitrary locations on the map, as 
you can see in the following code and Figure 7.12:

px.scatter_geo(lon=[10, 12, 15, 18], lat=[23, 28, 31, 40])
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This results in the following output:

Figure 7.12 – A scatter map using latitude and longitude data

You can easily apply the concepts we covered in Chapter 6, Explore Exploring Variables 
with Scatter Plots and Filtering Subsets with Sliders, to modify the size and map colors, set 
the opacity, and so on.

We will now explore these options by introducing another richer way of producing maps, 
using Mapbox.

Exploring Mapbox maps
Mapbox is an open source library for maps. It is backed by a company with the same 
name that also provides additional services, layers, and themes to produce rich mapping 
applications. The options we will be using here can be used immediately with Plotly, but 
there are some other styles and services that require you to register for an account and use 
a token every time you generate a map. 

An example should make it easy to start with, as we are already very familiar with  
scatter plots: 

px.scatter_mapbox(lon=[5, 10, 15, 20],

                  lat=[10, 7, 18, 5],

                  zoom=2,

                  center={'lon': 5, 'lat': 10},
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                  size=[5]*4,

                  color_discrete_sequence=['darkred'],

                  mapbox_style='stamen-watercolor')

The preceding code should be straightforward. The lon and lat parameters are 
the equivalents of the x and y parameters for scatter plots. The size and color_
discrete_sequence parameters have already been covered. An interesting new 
parameter is the zoom parameter, which we set to 2 here. This can take an integer value 
from 0 (the whole world) to 22 (building-level zoom), inclusive. We can also see how 
easy it is to set the center of a map, which we did using the first point's coordinates (5, 10). 
Finally, the mapbox_style parameter provides a set of interesting options to display 
maps in different styles. The stamen-watercolor style gives it an artistic look and can 
be seen in Figure 7.13:

Figure 7.13 – A scatter map using Mapbox and a custom style

Hovering over the i on the map displays the sources of the tiles and data. As you can see, 
there are so many layers and work condensed into this simple function. Let's now use the 
same approach to plot some data from our dataset.

Because scatter_mapbox mainly works with latitude and longitude data, and our 
dataset does not include any such data about the countries, we will obtain the data, merge 
it, and then plot the markers where they belong. 
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There are many sources for such data, and a quick online search will lead to some good 
sources. We can use the pandas read_html function for that. It takes a URL, downloads 
all the <table> elements at that URL, and returns a list of DataFrame objects. We simply 
have to take the one that we want. In this case, it is the first one. The following code 
achieves this, and creates the lat_long variable, which is a DataFrame:

lat_long =\

pd.read_html('https://developers.google.com/public-data/docs/
canonical/countries_csv')[0]

If you remember our discussion in Chapter 4, Data Manipulation and Preparation - Paving 
the Way to Plotly Express, where we went through several data manipulation operations, 
we will utilize the merge function from pandas to merge lat_long into poverty 
using a left merge operation.

We first take a look at the structure of the lat_long DataFrame by simply printing it in 
JupyterLab, and you can see the top and bottom five rows in Figure 7.14:

Figure 7.14 – The lat_long DataFrame containing latitude and longitude data for countries
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The country column contains country codes using two letters for each. The poverty 
DataFrame also has a column called 2-alpha code, which contains country codes 
using the same two-letter standard, so we merge using those columns as follows:

poverty = pd.merge(left=poverty, right=lat_long, how='left',

                   left_on='2-alpha code', right_on='country')

This will add the columns of lat_long to poverty, aligning the rows where they 
belong, as well as duplicating them where necessary. Remember, we are merging using the 
left method, which means the left argument is the basis for the merge. You can see a 
random sample of rows together with the important columns after merging in Figure 7.15 
to make it clear:

Figure 7.15 – A subset of the poverty DataFrame merged with lat_long

Note that in the case where we didn't have values for the longitude and latitude, we have 
NaN. In the cases where the same country name exists, for example, Tajikistan, the 
longitude and latitude values are simply duplicated, to keep the mapping of those values to 
their respective country, regardless of which rows we choose.

We are now ready to create a bubble chart (a scatter plot with the marker sizes reflecting a 
certain quantity). We just have to create a subset of poverty that contains only countries 
and removes any missing values for the required indicator, Population, total, in 
this case. This can be done with the following code: 

df =\

poverty[poverty['is_country']].dropna(subset=['Population, 
total'])



Exploring Mapbox maps     203

Creating a bubble chart requires you call to the scatter_mapbox function, but we will 
go through the given arguments one by one: 

1. Call the function with the subset just created: 

px.scatter_mapbox(df, …)

2. Select the columns that will be used for the longitude and latitude values:

lon='longitude', lat='latitude'

3. Set the desired zoom level, to show the whole Earth: 

zoom=1

4. Map the value of the indicator to the size of the markers and set a suitable 
maximum size:

size='Population, total', size_max=80

5. Map the income group that the respective country belongs to, to the color of the 
marker (discrete variables in this case):

color='Income Group'

6. Choose the year column as the one used to animate the chart: 

animation_frame='year'

7. Set a suitable opacity level, because we will definitely have overlapping markers:

opacity=0.7

8. Set a suitable height for the figure as a whole, in pixels:

height=650

9. Add more information to the hover box, by including two more columns' data to 
appear when users hover over markers: 

hover_data=['Income Group', 'Region']

10. Select a custom color sequence to differentiate the income groups that the countries 
belong to: 

color_discrete_sequence=px.colors.qualitative.G10



204     Exploring Map Plots and Enriching Your Dashboards with Markdown

11. Set a custom style for the map: 

mapbox_style='stamen-toner'

12. Set a title for the hover box, using the country name:

hover_name=df['Country Name']

13. Set a title for the figure: 

title="Population by Country"

Running the preceding code produces the interactive chart in Figure 7.16:

Figure 7.16 – A scatter_mapbox bubble chart for population by country using years as animation frames

Here is the full code that we just discussed to make it clear: 

px.scatter_mapbox(df,

                  lon='longitude',

                  lat='latitude',

                  zoom=1,

                  size='Population, total',

                  size_max=80,

                  color='Income Group',

                  animation_frame='year',

                  opacity=0.7,
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                  height=650,

                  hover_data=['Income Group', 'Region'],

                  color_discrete_sequence=px.colors.
qualitative.G10,

                  mapbox_style='stamen-toner',

                  hover_name=df['Country Name'],

                  title='Population by Country')

You can see how straightforward it is to set all the options, and how little code is involved. 
We only have to know the options and how they work. 

Because this is an interactive chart, and users can zoom in and out, it is easy to handle the 
overlaps that we have, simply by zooming in one level. Figure 7.17 shows the same chart 
after zooming (by the user):

Figure 7.17 – A scatter_mapbox chart zoomed in for a better view

One advantage of bubble charts over choropleth charts is that they show how the value 
relates to the geographic area of the country (or any location) visualized. For example, 
Figure 7.16 shows three interesting cases of Canada, Russia, and Australia, which seem 
to have a population that is relatively small compared to their area. In other words, their 
population density is low. This gives more perspective on this metric.

As you can see, there are so many options and ways to display and interact with maps, and 
we have barely scratched the surface of what can be done. We will now take a look at a few 
other options that are available, in case you are interested in learning more.
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Exploring other map options and tools
The following are a few pointers on what you can explore further with mapping, without 
getting into too much detail.

You've probably thought about having custom polygons or areas to visualize as choropleth 
maps. What we have covered so far are standard countries only. Of course, you have the 
option of visualizing a custom area with arbitrary points.

There is a standard GeoJSON format for representing such information. It mainly consists 
of points, lines, and polygons. Points are simply locations on the map, similar to what we 
used for scatter map plots. Lines are groups of connected points, in a certain sequence, 
where the first and last points are not the same. And as you can guess, a polygon is similar 
to a line, but with the condition that the first and last points are the same. Note that 
many countries consist of more than one polygon. Most Plotly map functions support 
GeoJSON, and you can use it for custom map plotting.

This can be useful when you have custom data for custom locations and you need to 
obtain the relevant data.

Another important and useful project to consider learning about is geopandas. 
As the name clearly suggests, it is a specialized library that works like pandas, and 
provides special data structures and techniques for geographic data, most notably 
GeoDataFrame. It is worth learning if you have more specialized mapping requirements, 
or if you frequently need to customize maps further.

Let's now add the functionality we created to the app.

Incorporating an interactive map into our app
The map that we created, together with the Dropdown and Markdown components, can 
become the first exploratory tool in our app. We can remove the population bar chart 
now, and in its place, we can place the components we just created, for users to explore all 
the indicators, see them on the map, and scroll through the years, and for each indicator, 
get the full details, as well as seeing the limitations and potential issues. Once something 
catches the user's eye, they can then find another chart that gives more detail about the 
indicator they want if it exists.

In order to fully incorporate the new functionality into our app, we need to go through the 
following steps:

1. Add the definition of series at the top of the app.py module:

series = pd.read_csv('data/PovStatsSeries.csv')
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2. Add the definition of the multiline_indicator function, anywhere before 
app.layout:

def multiline_indicator(indicator):

    final = []

    split = indicator.split()

    for i in range(0, len(split), 3):

        final.append(' '.join(split[i:i+3]))

    return '<br>'.join(final)

3. Add the Dropdown, Graph, and Markdown components at the top of the app, 
right under the top headings, where we previously had the population bar chart. 
The following code shows how, including the component IDs to make it clear, but 
the full definitions have been omitted. Note also the addition of a Col component 
as well as setting the width of another Col component, both using the lg (large) 
parameter. The first one introduces an empty column before displaying the content, 
and the second controls the width of the content in this column:

app.layout = html.Div([

    dbc.Col([

        html.Br(),

        html.H1('Poverty And Equity Database'),

        html.H2('The World Bank'),

    ], style={'textAlign': 'center'}),

    html.Br(),

    dbc.Row([

        dbc.Col(lg=2),

        dbc.Col([

            dcc.Dropdown(id='indicator_dropdown', ...),

            dcc.Graph(id='indicator_map_chart', ...),

            dcc.Markdown(id='indicator_map_details_md', 
...)

    ], lg=8)

    ]),

    html.Br()

We have explored several new options in this chapter, so let's summarize what we did.
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Summary
We started by exploring how to create choropleth maps, which are a type of map that we 
are all used to seeing. We also saw how to animate those maps if we have a sequential 
value, which in our case was viewing a certain indicator as it progressed throughout the 
available years. We then created a callback function and made the maps work with all the 
possible indicators that we have, so users could explore them all and then decide what 
they wanted to explore next.

After that, we learned how to use Markdown to generate HTML content, and how to add 
it to a Dash app. We then explored the different ways of displaying maps, or projections, 
and saw how to select the projection that we want.

We went through another type of map, which is a scatter map plot. Building on the 
knowledge we established in the previous chapter, it was fairly straightforward to adapt that 
knowledge to scatter maps. We also learned about the rich options that Mapbox provides 
and explored a few other topics for further exploration with maps. Finally, we integrated 
the new functionality into our app, which now contains a lot of explanatory text about 
almost all of the indicators, so users have a much better view of what they are analyzing.

In the next chapter, we will tackle a different type of chart, one that helps in counting 
values and showing how they are distributed in our dataset, the histogram. We will also 
explore a new component, the Dash DataTable, which allows us to display tabular data in 
a rich way, with many options to filter, visualize, download, and more.
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All the chart types that we've explored so far displayed our data as is. In other words, 
every marker, whether it was a circle, a bar, a map, or any other shape, corresponded 
to a single data point in our dataset. Histograms, on the other hand, display bars that 
correspond to a summary statistic about groups of data points. A histogram is mainly used 
to count values in a dataset. It does so by grouping, or "binning," the data into bins and 
displaying the count of observations in each bin. Other functions are possible, of course, 
such as working out the mean or maximum, but counting is the typical use case. The 
counts are represented like a bar chart, where the heights of the bars correspond to the 
counts (or other function) of each bin. Another important result is that we also see how 
data is distributed, and what shape/kind of distribution we have. Are the observations 
concentrated around a certain point or more than one point? Are they skewed to the left 
or the right? This can give us an overview of this aspect of our data.
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Probability distributions are fundamental in statistics and crucial in getting an overview 
of our data. It is important to know how data values are spread in our sample or dataset, 
and where they are concentrated. If a dataset looks normally distributed, we might 
make different assumptions and have different expectations than if it were exponentially 
distributed. Histograms help in revealing the shape of the distribution of our data.

We will also explore Dash's DataTable component in this chapter. This is a flexible, 
powerful, and feature-rich component that helps us with, among other things, displaying, 
filtering, and exporting tables of data.

We will go through the following topics in this chapter: 

• Creating a histogram

• Customizing the histogram by modifying its bins and using multiple histograms

• Adding interactivity to histograms

• Creating a 2D histogram

• Creating a DataTable

• Controlling the look and feel of the table (cell width, height, text display, and more)

• Adding histograms and tables to the app

Technical requirements
We will use similar tools to the ones we used in the previous chapter with one addition. 
We will be using Plotly Express as well as the graph_objects module for creating 
our charts. The packages to use are Plotly, Dash, Dash Core Component, Dash HTML 
Components, Dash Bootstrap Components, pandas, and the new dash_table package. 
You don't need to install this separately (although you can), as it is installed together with 
Dash when you install it.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_08.

Check out the following video to see the Code in Action at https://bit.ly/3sGSCes.

Creating a histogram
We want to see how we can get the distribution of a sample of data and get an idea of 
where values are concentrated, as well as how much variability/spread it has. We will do 
this by creating a histogram.

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_08
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_08
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_08
https://bit.ly/3sGSCes
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As always, we'll start with the simplest possible example: 

1. We open the poverty DataFrame and create a subset of it, containing only 
countries and data from the year 2015:

import pandas as pd

poverty = pd.read_csv('data/poverty.csv')

df = poverty[poverty['is_country'] & poverty['year'].
eq(2015)]

2. Import Plotly Express and run the histogram function with df as the argument 
to the data_frame parameter and the indicator of our choice for the x parameter: 

import plotly.express as px

gini = 'GINI index (World Bank estimate)'

px.histogram(data_frame=df, x=gini)

As a result, we get the histogram that you can see in Figure 8.1:

Figure 8.1 – A histogram of the Gini indicator

The x axis was named using the indicator we chose, and the y axis was given the title 
count. This is the default function that the histogram function uses, and it is clear also 
from the hover box that we see when hovering over any of the bars. Here we learn that 
there are 18 countries whose Gini index was in the interval (35, 39.9) in the year 2015. We 
have previously visualized this indicator by country (visualizing each and every country), 
but this time, we are getting an idea of how many values are available in each bin and how 
those values are distributed. We can see that the majority of countries have a Gini index 
between 25 and 40 and that the numbers get progressively lower the higher the Gini index 
becomes. This is valid for this particular year only, of course.
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We are using the default number of bins, but we can modify it if we want. This is 
something that you typically want to interactively modify until you get a good view. In 
an interactive setting, such as in a dashboard, it's probably a good idea to allow users to 
modify the number of bins, especially if you don't know which metric they will choose 
and how the values are distributed for that metric. This is exactly our case in the dataset 
we are working with.

Let's see the effect of changing the number of bins, as well as other available modifications.

Customizing the histogram by modifying its 
bins and using multiple histograms
We can change the number of bins through the nbins parameter. We will first see the 
effect of using two extreme values for the number of bins. Setting nbins=2 generates the 
chart in Figure 8.2: 

  

Figure 8.2 – A histogram of the Gini indicator with two bins

As you can see, the values were split into two equal bins, (20, 39.9) and (40, 59.9), and we 
can see how many countries are in each bin. It's quite simple and easy to understand, but 
not as nuanced as the histogram in Figure 8.1. On the other hand, setting nbins=500 
produces the chart in Figure 8.3:
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Figure 8.3 – A histogram of the Gini indicator with 500 bins

It is now much more detailed, maybe more detailed than useful. When you set too many 
bins, it is almost like looking at the raw data.

The default number of bins resulted in the bin size being intervals of five. Now that we 
know that our values range between 25 and 60 (45), we might want to see how the data is 
distributed across 45 bins. This makes the size of each bin 1. Figure 8.4 shows the result of 
setting nbins=45:

Figure 8.4 – A histogram of the Gini indicator with 45 bins
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All the figures we created in this chapter so far were for the same dataset. You can see how 
different the distribution looks based on the selected number of bins. You can also think 
of it as looking at the distribution of the data with varying resolutions. There is usually an 
optimal resolution for your use case that can be manually tweaked until you find the most 
useful/insightful one for you. This is a major advantage of making histograms interactive, 
where you allow your users to explore as they see fit.

Recall that we have a few categorical columns in our dataset and that we might use those 
columns to color our bars to get a more detailed view of the data. Let's see how this can  
be done.

Using color to further split the data
As you might have guessed, adding color to a Plotly Express chart is simply done by 
selecting a column from the DataFrame we are using. Setting color='Income Group' 
generates the chart you can see in Figure 8.5:

Figure 8.5 – A histogram of the Gini indicator colored by Income Group

This is the exact same histogram but enriched by another dimension of the dataset. Each 
bar is split by Income Group and colored accordingly. We can now see for each bin how 
many countries there are from each income group.

You can also see the effect of setting color='Region', color_discrete_
sequence=px.colors.qualitative.Set1 in Figure 8.6:
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Figure 8.6 – A histogram of the Gini indicator colored by Region

Again, we have the same histogram, but colored using a different column, Region in this 
case. If you remember our discussion of bar charts in Chapter 5, Interactively Comparing 
Values with Bar Charts and Dropdown Menus, we saw that there are different ways of 
displaying bars. This can also be achieved using the barmode parameter. Let's explore 
how this applies to histograms.

Tip
You might have noticed that the bars in histograms are displayed in a 
connected manner, without any spaces between them as is the case in bar 
charts. This is a visual cue, to indicate the connected nature of histograms. 
The bins are arbitrary separation points that separate a group of observations 
from one another. As we saw, those can be selected differently, and result in 
quite different shapes. Bar charts are typically used for discrete or categorical 
variables and are typically displayed with some space between them to express 
this fact.

Exploring other ways of displaying multiple bars in 
histograms
The two previous histograms displayed the sub-bars in each bin stacked on top of one 
another. This makes sense, as those sub-bars represent a grouping of the data under  
the respective bin. In other words, they show the distribution of groups of countries for 
each bin.
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In some other cases, we might want to do the same thing but for two different years. 
In this case, having the bars stacked might give the false impression that the sub-bars 
correspond to portions of the same bin, whereas they correspond to the same bin but for 
different years. An example can show this more easily: 

1. Create a subset of poverty that contains only countries and the range of years is 
[2010, 2015]: 

df = poverty[poverty['is_country'] & poverty['year'].
isin([2010, 2015])]

2. Run the histogram function for the Gini index, coloring by year and setting 
barmode='group': 

px.histogram(df, x=gini, color='year', barmode='group')

This results in the following output:

Figure 8.7 – A histogram of the Gini indicator colored by year, with barmode set to "group"

Because years represent a "before and after" view of the same metric and the same bin, I 
think it makes more sense to display them next to each other, so we can see how each bin 
value increased or decreased for the two, or more, selected years.

There is another approach to the same issue if we are more interested in highlighting the 
change in the distribution as a whole. We can run the same function we just ran, but use 
facets in addition to color to split the histogram in two. The code is also straightforward 
and contains one more argument, as follows:

px.histogram(df, x=gini, color='year', facet_col='year')
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This results in the following output:

Figure 8.8 – A histogram of the Gini indicator colored and split by year

Again, the last two charts display the same information in two different ways. In Figure 
8.7, it's very easy to compare how the count of countries for each bin changed from year  
to year. But it's a bit more difficult to see how the distributions have changed between the 
first and second years. The opposite is true for Figure 8.8. Note that we could also use 
facet_row as well, and this would have displayed the charts on top of one another. But 
we chose to display them next to each other because we are interested in comparing the 
heights of the bars, and it's much easier to do so when they are next to each other. Had  
we set orientation='h' (for horizontal), then it would have been easier to use 
facet_row in this case.

Sometimes we might be more interested in the percentage of the number of values in a 
certain bin, as opposed to the absolute count for each bin. Getting this is also very simple. 
We just need to set histnorm='percent'. We start by creating a fig object and add 
the new option:

fig = px.histogram(df, x=gini, color='year', facet_col='year',

We can also make it more explicit that we are displaying percentages by adding a tick 
suffix to the y-axis ticks. This can be achieved with the following code: 

fig.layout.yaxis.ticksuffix = '%'
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We might also want to set a more descriptive title for the y axis, which can also be easily 
achieved using the following code:

fig.layout.yaxis.title = 'Percent of total'

Running this modified code produces the chart in Figure 8.9:

Figure 8.9 – A histogram of the Gini indicator colored and split by year, showing percentages

This chart looks identical to the one in Figure 8.8. The main difference is that the height of 
the bars represents the percentage and not the absolute count. This was also made clearer 
with tick suffixes and a y-axis title.

We have explored quite a few options with histograms. Let's now make our histograms 
interactive and add a few other options.

Adding interactivity to histograms
Just like we did in Chapter 7, Exploring Map Plots and Enriching Your Dashboards with 
Markdown, we can do the same with histograms. We can allow users to get a better idea 
about the distribution of a certain indicator in a certain year or more. The difference 
is that we want to allow them to customize the number of bins. Since we are now 
comfortable with handling multiple inputs and outputs, let's also add some more options 
for our users. We can also allow users to select multiple years and display multiple years 
on multiple sub-plots using faceting. Figure 8.10 shows what we will be working toward  
to make it clear:
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Figure 8.10 – A histogram app allowing the selection of indicator, year(s), and bins

Let's start building right away. We won't be discussing the layout elements such as color 
and width, but you can always refer to the code repository for the exact solution. We will 
focus on building the interactivity for this. Later on, we will add it to our app: 

1. Make the necessary imports:

from jupyter_dash import JupyterDash

import dash_core_components as dcc

import dash_html_components as html

import dash_bootstrap_components as dbc

from dash.dependencies import Output, Input

2. Create an app object and its layout attribute:

app = JupyterDash(__name__)

app.layout = html.Div([])
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3. Add Label and Dropdown components as the first elements to the div just 
created. The Dropdown component displays the available indicators, and is the 
exact same one we created in Chapter 7, Exploring Map Plots and Enriching Your 
Dashboards with Markdown:

html.Div([

    dbc.Label('Indicator:'),

    dcc.Dropdown(id='hist_indicator_dropdown',

                 index (World Bank estimate)',

                 indicator, 'value': indicator}

for indicator in poverty.columns[3:54]]),

])

4. Add a dbc.Label and a dcc.Dropdown component to the list in the div for 
indicating that the user can select a year and the actual years to be selected, allowing 
multiple selections. Note that since this dropdown allows multiple selection, its 
default value, if provided, needs to be provided as a list:

dbc.Label('Years:'), dcc.Dropdown(id='hist_multi_year_
selector',

             value=[2015],

             one or more years',

             year, 'value': year}

                      for year in poverty['year'].drop_
duplicates().sort_values()]),

5. Again, to the same list in the div, we add another dbc.Label component and a 
dcc.Slider component that will allow users to modify the number of bins in the 
resulting histogram(s). Note that by not setting a default value, Plotly will provide 
the default number of bins based on the data being analyzed. It would show as 0 in 
the slider. Users are then free to modify it if they wish to do so:

dbc.Label('Modify number of bins:'),

dcc.Slider(id='hist_bins_slider',

           min=0,

           step=5,

           marks={x: str(x) for x in range(0, 105, 5)}),
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6. Finally, we add a Graph component, and this will complete our layout: 

dcc.Graph(id='indicator_year_histogram')

Running these steps creates our app's visible part (the layout) without any functionality. 
The default looks as in Figure 8.11, and I'll leave it to you to modify the colors, alignment, 
and relative positioning, using the knowledge we built in Chapter 1, Overview of the  
Dash Ecosystem:

Figure 8.11 – The default view of the histogram app with no functionality

We'll now go on to build the interactivity. In this case, we need to build a function that 
takes three inputs (the indicator dropdown, the years dropdown, and the bins slider). It 
will return a Figure object, which will modify the chart at the bottom of the figure:

1. Create the callback. There is nothing special here; we just make sure to have the IDs 
show that they are related to the histogram:

@app.callback(Output('indicator_year_histogram', 
'figure'),

              Input('hist_multi_year_selector', 'value'),

              Input('hist_indicator_dropdown', 'value'),

              Input('hist_bins_slider', 'value'))
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2. Create the function that generates our histogram using the inputs just created. We 
first check that neither year nor indicator is provided, in which case we raise 
PreventUpdate:

def display_histogram(years, indicator, nbins):

    if (not years) or (not indicator):

        raise PreventUpdate

3. Create a sub-set, df, by selecting countries only, as well as getting rows where the 
year is in the provided years argument:

df = poverty[poverty['year'].isin(years) & poverty['is_
country']]

4. We are now ready to create the figure, which is done by calling the histogram 
function. As we saw in this chapter, we provide df to the data_frame parameter, 
indicator for the x parameter, and year to color. The title of the figure will 
be set by concatenating the indicator with the Histogram string. The nbins 
parameter will take the nbins value selected by the user from the slider. For  
facets, we use the year column. Since we don't know how many years users will 
select, and we don't want them to end up creating a difficult-to-read chart, we set 
facet_col_wrap=4. This will ensure that each row of charts will contain no 
more than four, and the following one will be added to the next row of charts:

fig = px.histogram(df,

                   color='year',

                   + ' Histogram',

                   facet_col='year',

                   height=700)

5. A new and interesting option that we haven't covered so far is the for_each_xaxis 
attribute. Note that this is only one of several for_each_ attributes, which you can 
explore separately. This is useful in situations where the number of x-axis attributes is 
not known, such as in this case, or simply when multiple attributes exist. By default, 
every facet (or sub-plot) will have its own x-axis title. As you know, there are many 
indicator names that are very long and will overlap in this case. To eliminate this, we 
set all xaxis titles to an empty string:

fig.for_each_xaxis(lambda axis: axis.update(title=''))
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6. To replace the deleted x-axis titles, we can create an annotation instead. The annotation 
is a simple string that can easily be added with the add_annotation method. 
Because we want the X position of the annotation to be at the center of the figure, we 
set its x value to 0.5. Also, because we want the Y position to be slightly below the plot 
area, we set the y value to -0.12. Now, it's important to indicate to Plotly the meaning 
of those numbers we provide, or their reference. We can use the xref and yref 
parameters to indicate that these values should take paper as their reference. This 
means to take these points as fractions of the plot and not as data points, like in scatter 
plots, for example. This is useful because those annotations will serve as axis titles, and 
so we want their position to be fixed. By default, annotations come with arrows pointing 
to the point selected. We can remove that by setting showarrow=False, as follows:

fig.add_annotation(text=indicator,

                   y=-0.12,

                   yref='paper',

The following is the full code of the function to make it clearer:

@app.callback(Output('indicator_year_histogram', 'figure'),

              Input('hist_multi_year_selector', 'value'),

              Input('hist_indicator_dropdown', 'value'),

              Input('hist_bins_slider', 'value'))

def display_histogram(years, indicator, nbins):

    if (not years) or (not indicator):

        raise PreventUpdate

    df = poverty[poverty['year'].isin(years) & poverty['is_
country']]

    fig = px.histogram(df,

                       color='year', 

                       + ' Histogram',

                       facet_col='year',

                       height=700)

    fig.for_each_xaxis(lambda axis: axis.update(title=''))

    fig.add_annotation(text=indicator, 

                       y=-0.12, 

                       yref='paper',

                       fig
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With this, we have created an independent app that can run in JupyterLab. I encourage 
you to fully run it and see whether you come across issues, and to also customize and 
make some changes to it.

So far, we have explored how to visualize the counts and distributions of values for a single 
set of observations. There is also an interesting way to explore two sets of observations at 
the same time, which can be done using a 2D histogram.

Creating a 2D histogram
In the first case, we basically counted the observations in each bin of our dataset. In this 
case, we will do the same but for combinations of bins for both datasets. The bins for each 
variable will end up creating a matrix. A simple example can make this easy. Let's create 
one and see:

1. Create a subset of poverty containing only countries, where the year is equal  
to 2000:

df = poverty[poverty['year'].eq(2000) & poverty['is_
country']]

2. Create a Figure object and add a histogram2d trace (at the time of writing, this 
chart type is not available in Plotly Express). We simply select any two indicators 
that we would like to plot together and pass them to x and y: 

fig = go.Figure()

fig.add_histogram2d(x=df['Income share held by fourth 
20%'],

                    y=df['GINI index (World Bank 
estimate)'],

                    colorscale='cividis')

3. Add titles for the x and y axes: 

fig.layout.xaxis.title = 'Income share held by fourth 
20%'

fig.layout.yaxis.title = 'GINI index (World Bank 
estimate)'

fig.show()
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Running the preceding code generates the chart in Figure 8.12:

Figure 8.12 – A 2D histogram

The frequency of values is expressed in a different way here. With a 1D histogram, 
the height of the bars represents the frequency of values in the respective bin. In a 2D 
histogram, the "height" is expressed using a continuous color scale. We can see from the 
color bar that the counts range from 0 to 10, and that the bin combination with the most 
values is the x interval (22, 22.9) and the y interval (30, 39.9), with a z value (height) of 
10. Generally, z is used to refer to the third dimension, and so this can also be thought of 
as the height of this rectangle.

Note that this is different from using a scatter plot for two variables. In that case, we would 
be interested in seeing a correlation between the two variables, or at least how they both 
vary. In this case, we are trying to identify where the most frequent observations are, 
across two variables, and under which combination of bins.

There are still many options that you can explore with histograms, or visualizing 
distributions and counts in general. We have explored many of those options, and now we'll 
turn to explore another interactive component that is available in Dash, the DataTable.

Creating a DataTable
Technically, dash_table is a separate package, as mentioned at the beginning of the 
chapter, and can be installed separately. It is installed automatically with Dash, the correct, 
up-to-date version, which is the recommended approach.
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Many times, displaying tables, especially if they are interactive, can add a lot of value to 
users of our dashboards. Also, if our dashboards or data visualizations are not sufficient 
for users, or if they want to run their own analysis, it is probably a good idea to allow 
them to get the raw data for that. Finally, the DataTable component allows its own data 
visualization through custom coloring, fonts, sizes, and so on. So, we have another way 
to visualize and understand our data through tables. We will explore a few options in this 
chapter, but definitely not all of them.

Let's see how we can create a simple DataTable in a simple app using a DataFrame:

1. Create a subset of poverty containing only countries, from the year 2000, and 
containing columns that have Country Name or have the income share of the 
top and bottom 10% of the population. We use the filter method with a regular 
expression to achieve that:

df = poverty[poverty['year'].eq(2000)&poverty['is_
country']].filter(regex='Country Name|Income share.*10')

2. Create an app in JupyterLab with a layout attribute: 

app = JupyterDash(__name__, external_stylesheets=[dbc.
themes.COSMO])

app.layout = html.Div([])

3. Pass a DataTable object to the div just created. As a minimum, a table requires 
values for the data parameter, as well as the columns parameter. One of the 
easiest ways to do this is by providing a dictionary converted from a DataFrame, 
using the to_dict('records') method. columns needs to be a list of 
dictionaries, where each dictionary contains the name and id keys. The name is 
what appears to users, and the ID is the value that will actually be used:

DataTable(data=df.to_dict('records'),

          columns=[{'name': col, 'id': col}

                   col in df.columns])

Running this simple app with app.run_server() produces a table as you can see in 
Figure 8.13, showing the first few rows:
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Figure 8.13 – A simple DataTable

Many times, your tables or column headers might not fit neatly in the container they are 
placed in. For example, in our case, many indicator names are extremely long, and their 
columns contain numbers that don't take much horizontal space. Let's explore some of the 
available options to handle this.

Controlling the look and feel of the table  
(cell width, height, text display, and more)
There are numerous options available to modify how your tables look, and it's always good 
to consult the documentation for ideas and solutions. The potentially tricky part is when 
you have combinations of options. In some cases, these might modify each other and not 
be displayed exactly the way you want. So, it is always good to isolate the options as much 
as possible when debugging.

In Figure 8.13, we displayed only three columns and the first few rows. We will now see 
how to display more columns and enable users to explore more rows:

1. Modify df to include all columns that contain Income share:

df = poverty[poverty['year'].eq(2000)&poverty['is_
country']].filter(regex='Country Name|Income share')
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2. Place the DataTable in a dbc.Col component with the desired width, 7 in this 
case. The table automatically takes the width of the container it is in, so this would 
set its width implicitly:

dbc.Col([], lg=7)

3. We now want to determine how the column headers will behave, especially as they 
have quite long names. This can be achieved with the style_header parameter. 
Note that there are several style_ parameters for headers, cells, and tables, and they 
also have _conditional variants, for example, style_cell_conditional, to 
conditionally set the style of cells. We now specify the header style with the following 
option, to allow text to overflow into multiple lines when/if needed:

style_header={'whiteSpace': 'normal'}

4. We now want to make sure that while scrolling, the headers remain fixed in place:

fixed_rows={'headers': True}

5. In order to control the height of the table as a whole, we can simply do so with the 
following parameter:

style_table={'height': '400px'}

6. In cases where we have thousands of rows, it might be heavy and affect the 
performance of the page, so we can use virtualization. In our case, it is a very 
small table, but we can set virtualization to demonstrate its usage:

virtualization=True

Putting the code together, here is the full code to generate the table:

dbc.Col([

    DataTable(data=df.to_dict('records'),

              columns=[{'name': col, 'id': col}

                       col in df.columns],

              style_header={'whiteSpace': 'normal'},

              fixed_rows={'headers': True},

              virtualization=True,

              style_table={'height': '400px'})

], lg =7),



Adding histograms and tables to the app     229

Running this modified code produces the table in Figure 8.14:

Figure 8.14 – A DataTable with custom options for width, height, scrolling, and virtualization

The scroll bar is only visible if the cursor is pointing there. It was kept for demonstration, 
and to make it clear that scrolling is enabled. Now users can see all the available rows by 
scrolling as much as they want. We will now see how to incorporate some interactivity 
with tables and add this to our app. We'll also use this as an opportunity to demonstrate a 
few other options available to the DataTable component.

Adding histograms and tables to the app
We are now ready to incorporate the table functionality into our app and add it to the 
callback function that we already created. What we will do is display the data that is used 
to generate the histograms right under the histogram figure. Since the histograms don't 
show data points as we discussed (only aggregates), it might be interesting for users to see 
for themselves if they wish.

Let's add this functionality right away:

1. Add a new div right underneath the histogram figure:

html.Div(id='table_histogram_output')
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2. Add this as an Output to the callback function:

@app.callback(Output('indicator_year_histogram', 
'figure'),

              Output('table_histogram_output', 
'children'),

              Input('hist_multi_year_selector', 'value'),

              Input('hist_indicator_dropdown', 'value'),

              Input('hist_bins_slider', 'value'))

3. Right after we finish the definition of our Figure object, we add the definition of 
our DataTable. We will be using the same options as before and adding a few new 
ones. We first add the ability to sort columns:

sort_action='native'

4. Now, we add the ability to filter columns. This will add an empty box right under 
each column header. Users can enter text and hit Enter to get a filtered table:

filter_action='native'

5. Add the ability to export the table to CSV format:

export_format='csv'

6. We set a minimum width for cells to keep it consistent and avoid any formatting 
issues due to different columns' headers:

style_cell={'minWidth': '150px'}

7. Finally, add the table to the return statement at the end of the function, so it 
returns two items instead of one: 

return fig, table

As a result of adding this functionality, our updated app will contain the table that is being 
used to generate the histograms, and users can export it or interact with it if they want. 
Figure 8.15 shows our app with the additional customized DataTable:
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Figure 8.15 – A DataTable showing the data used to generate the histograms

We now have an Export button, which is clear and immediately triggers the download 
functionality in the browser. Header names now have arrows that allow users to sort, in 
an ascending or descending manner. You can also see the filtering option, with the filter 
data… placeholder text, which users can filter by.

Now, in order to incorporate this functionality into our app, we simply have to copy the 
components where we want them to appear. As this can be thought of as exploratory 
functionality (users are still not digging deep into an indicator), it's probably good to have 
it under the map chart.

To add the interactivity, we only have to add the callback function that we created, as we 
always do, after the layout of the app.

We have already done this many times, and it should be straightforward for you to do so.

Our app is now getting really rich. We have two main exploratory interactive charts at 
the top. The maps allow users to select a metric and see its variation across countries on 
the map. They can also select the year and/or allow it to play like a video. The selected 
indicator triggers the display of descriptive text about it, for more context to users. Under 
that, we have the option of selecting an indicator and one or more years, to see how this 
indicator is distributed with histograms. Users can modify the number of bins to get an 
optimal view. This also updates the table they can interact with and export.
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After having explored the indicators of interest, users can go on to explore specific 
indicators using the three specialized charts that we created.

Congratulations! We have now completed Part 2 of the book, so it's good to review what 
we have done in the chapter, as well as Part 2, and get ready for Part 3.

Summary
In this chapter, we first learned about the main difference between histograms and the 
other types of charts we have covered so far. We saw how easy it is to create them, and 
more importantly, we saw how customizable they can be with bins, barmode, colors, and 
facets. We then explored how to add interactivity to histograms by connecting them to 
other components with a callback function.

We then explored the 2D histogram and saw how it can provide an even richer view of 
two columns visualized against each other.

We introduced a new interactive component, the DataTable. We barely scratched the 
surface of what can be done with tables. We used them to make it easier for users to 
obtain, interact with, or simply view the raw data behind our histograms. We also 
explored the different ways to control the look and feel of our tables.

Finally, we incorporated the table functionality with the callback function we created and 
added the interactivity to our app.

Let's now take a quick look at what we have covered so far in the book and prepare  
for Part 3.

What we have covered so far
In the first part of the book, we covered the basics of Dash apps. We first explored how 
they are structured and how to manage the visual elements. Then, we explored how 
interactivity is created, which is mainly by using callback functions. This allowed us to 
create fully interactive apps. We then explored the structure of the Figure object and 
learned how to modify and manipulate it to generate the charts we desire. After that, we 
saw how important data manipulation and preparation are for data visualization. We went 
through a reshaping of our dataset, to make things more intuitive to work with. This paved 
the way for easily learning and using Plotly Express.



What we have covered so far     233

Part 2 was about getting thoroughly familiar with several types of charts, as well as 
interactive components. We implemented all the knowledge we built in Part 1, but most 
importantly, we did this in a practical setting. We gradually added more and more charts, 
components, and functionality to one app. At every step, we had to consider how it will 
affect the whole app and had to make sure we did so with a holistic view. You are now very 
familiar with making changes to many types of functionality. Although we didn't cover 
every type of chart and component, the general principles are similar, and you can easily 
adapt the knowledge you have to new situations.

Part 3 will move on to more general topics about apps, URLs, advanced callbacks, and 
deployment. But the next chapter will explore a few machine learning options. Our 
dataset contains many countries, years, and indicators, and the number of possible 
combinations to explore is massive. So, we will explore a few techniques that can help 
uncover trends or correlations in our data.





This section explores further options regarding fine-tuning, improving, and extending 
your app. It shows you several new strategies and techniques for modifying and pushing 
your app to the cloud.

This section comprises the following chapters:

• Chapter 9, Letting Your Data Speak for Itself with Machine Learning

• Chapter 10, Turbo-charge Your Apps with Advanced Callbacks

• Chapter 11, URLs and Multi-Page Apps

• Chapter 12, Deploying Your App

• Chapter 13, Next Steps

Section 3:  
Taking Your App to 

the Next Level





9
Letting Your Data 

Speak for Itself with 
Machine Learning

While making histograms we got a glimpse of a technique that visualizes aggregates, and 
not data points directly. In other words, we visualized data about our data. We will take 
this concept several steps further in this chapter, by using a machine learning technique to 
demonstrate some options that can be used to categorize or cluster our data. As you will 
see in this chapter, and even while using a single technique, there are numerous options 
and combinations of options that can be explored. This is where the value of interactive 
dashboards comes into play. It would be very tedious if users were to explore every single 
option by manually creating a chart for it.

This chapter is not an introduction to machine learning, nor does it assume any prior 
knowledge of it. We will explore a clustering technique called KMeans clustering and 
use the sklearn machine learning package. This will help us in grouping our data into 
clusters of observations that are similar to one another, and yet distinct from observations 
in other clusters. We will build a very simple model with a single-dimensional dataset, and 
then see how this can be applied to clustering countries in our poverty dataset.

If you are familiar with machine learning, then this chapter will hopefully give you some 
ideas of how to empower your users and allow them to tune and explore several aspects of 
the models used. If not, you should be able to complete the chapter, and it will hopefully 
inspire you to explore more machine learning concepts and techniques.
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We will go through the following topics in this chapter:

• Understanding clustering

• Finding the optimal number of clusters

• Clustering countries by population

• Preparing data with scikit-learn

• Creating an interactive K-Means clustering app

Technical requirements
We will be exploring a few options from sklearn, as well as NumPy. Otherwise, we will 
be using the same tools we have been using. For visualization and building interactivity, 
Dash, JupyterDash, the Dash Core Component library, Dash HTML Components, Dash 
Bootstrap Components, Plotly, and Plotly Express will be used. For data manipulation 
and preparation, we will use pandas and NumPy. JupyterLab will be used for exploring 
and building independent functionality. Finally, sklearn will be used for building our 
machine learning models, as well as for preparing our data.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_09.

Check out the following video to see the Code in Action at https://bit.ly/3x8PAmt.

Understanding clustering
So, what exactly is clustering and when might it be helpful? Let's start with a very simple 
example. Imagine you have a group of people for whom we want to make T-shirts. We can 
make a T-shirt for each one of them, in whatever size required. The main restriction is that 
we can only make one size. The sizes are as follows: [1, 2, 3, 4, 5, 7, 9, 11]. Think how you 
might tackle this problem. We will use the KMeans algorithm for that, so let's start right 
away, as follows:

1. Import the required packages and models. NumPy will be imported as a package, 
but from sklearn we will import the only model that we will be using for now, as 
illustrated in the following code snippet:

import numpy as np

from sklearn.cluster import KMeans

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_09
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_09
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_09
https://bit.ly/3x8PAmt
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2. Create a dataset of sizes in the required format. Note that each observation  
(person's size) should be represented as a list, so we use the reshape method of 
NumPy arrays to get the data in the required format, as follows:

sizes = np.array([1, 2, 3, 4, 5, 7, 9, 11]).reshape(-1, 
1)

sizes

array([[ 1],

       [ 2],

       [ 3],

       [ 4],

       [ 5],

       [ 7],

       [ 9],

       [11]])

3. Create an instance of the KMeans model with the required number of clusters. An 
important feature of this model is that we provide the desired number of clusters for 
it. In this case, we were given a constraint, which is that we can only make T-shirts 
in one size, so we want to discover a single point that would be the center of our 
discovered cluster. We will explore the effect of the chosen number of clusters after 
that. Run the following code:

kmeans1 = KMeans(n_clusters=1)

4. Fit the model to the data using the fit method. This means that we want the model 
we just created to "learn" the dataset based on this particular algorithm, and with 
the provided parameters/options. This is the code you will need:

kmeans1.fit(sizes)

KMeans(n_clusters=1)

We now have a model that has been trained on this dataset, and we can go on to check 
some of its attributes. As a convention, the resulting attributes of the fitted models have a 
trailing underscore to them, as we will see now. We can now ask for the clusters that we 
asked for. The cluster_centers_ attribute provides the answer to this. The centers  
(in this case, one center) are basically the means of the clusters of our data points. Let's 
check the result, as follows:

kmeans1.cluster_centers_

array([[5.25]])
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We received the attribute in the form of a list of lists. The center of our cluster is 5.25, 
apparently. You might be thinking that this is a convoluted way of calculating the mean of 
our dataset, and you would be right. Have a look at the following code snippet:

sizes.mean()

5.25

Indeed, our cluster center happens to be the mean of our dataset, which is exactly what 
we asked for. To visualize this, the following screenshot shows the relative position of the 
cluster center, related to our data points:

 

Figure 9.1 – The Sizes data points, with the cluster center provided by KMeans

The chart depicted in the previous screenshot is very simple—we simply plot the sizes on 
the x axis, and an arbitrary constant value for the y axis.

In order to evaluate the performance of our model and how well it fits the data, there 
are several ways to do this—one way is by checking the inertia_ attribute. This is an 
attribute of the instance we created and can be accessed after fitting it to the data, using 
dot notation, as follows:

kmeans1.inertia_

85.5

The inertia_ metric is the sum of squared distances of samples, to their closest cluster 
center. If the model performs well, the distances of the samples to the provided cluster 
centers should be as short as possible (data points are close to the cluster centers). A perfect 
model would have an inertia rate of 0. Also, looking at it from the other side, we also know 
that asking for one cluster would give us the worst possible outcome because it is just one 
cluster, and to be the average point it has to be very far from the extreme data points.

Accordingly, we can improve the performance of the model simply by adding more 
clusters, because their distances to the centers would be reduced.
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Now, imagine that I called you and shared some good news. We have an additional budget 
for one more size, and now we want to make T-shirts in two sizes. Translating to machine 
learning language, this means we need to create a new model with two clusters. We repeat 
the same steps and modify the n_clusters argument, as follows:

kmeans2 = KMeans(n_clusters=2)

kmeans2.fit(sizes)

kmeans2.cluster_centers_

array([[3.],

       [9.]])

We now have two new centers, as specified.

It's not enough to know the centers of our clusters. For each point, we need to know which 
cluster it belongs to, or we want to know the size of T-shirt that we will give to each person 
in our group. We can also count them and check the number of points in each cluster.

The labels_ attribute contains this information, and can be seen here:

kmeans2.labels_

array([0, 0, 0, 0, 0, 1, 1, 1], dtype=int32)

Note that the labels are given using integers starting at 0. Also note that the numbers don't 
mean anything quantitative. Points that have a zero label are not from the first cluster; nor 
are points with the label 1 "more" than the others in any way. These are just labels, such as 
calling them group A, group B, and so on. 

We can map the labels to their respective values by using the zip function, as follows:

list(zip(sizes, kmeans2.labels_))

[(array([1]), 0),

 (array([2]), 0),

 (array([3]), 0),

 (array([4]), 0),

 (array([5]), 0),

 (array([7]), 1),

 (array([9]), 1),

 (array([11]), 1)]
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This will be very important later when use those labels in our charts.

Let's also visualize the two centers to get a better idea of how this works. The following 
screenshot shows where the cluster centers are located relative to other data points:

 Figure 9.2 – The Sizes data points, with two cluster centers provided by KMeans

The centers make sense visually. We can see that the first five points are close to each other 
and that the last three are distinct and far from them, with larger gaps. Having 3 and 9 
as cluster centers makes sense, because each of them is the mean of the values of its own 
cluster. Let's now numerically validate that we have improved the performance of our 
model by checking the inertia rate, as follows:

kmeans2.inertia_

18.0

Indeed, the performance was tremendously improved and reduced from 85.5 to 18.0. 
Nothing surprising here. As you can expect, every additional cluster would improve the 
performance until we reach the perfect result with an inertia rate of 0. So, how do we 
evaluate the best options available for the number of clusters?

Finding the optimal number of clusters
We will now see the options we have in choosing the optimal number of clusters and what 
that entails, but let's first take a look at the following screenshot to visualize how things 
progress from having one cluster to eight clusters:
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Figure 9.3 – Data points and cluster centers for all possible cluster numbers

We can see the full spectrum of possible clusters and how they relate to data points. At  
the end, when we specified 8, we got the perfect solution, where every data point is a 
cluster center.

In reality, you might not want to go for the full solution, for two main reasons. Firstly, it is 
probably going to be prohibitive from a cost perspective. Imagine making 1,000 T-shirts 
with a few hundred sizes. Secondly, in practical situations, it usually wouldn't add much 
value to add more clusters after a certain fit has been achieved. Using our T-shirt example, 
imagine if we have two people with sizes 5.3 and 5.27. They would most likely wear the 
same size anyway.

So, we know that the optimal number of clusters is between one and the number of 
unique data points we have. We now want to explore the trade-offs and options of 
figuring out that optimal number. One of the strategies we can use is to check the value 
of additional—or incremental—clusters. When adding a new cluster, does it result in a 
meaningful reduction (improvement) in inertia? One such technique is called the "elbow 
technique." We plot the inertia values against the number of clusters and see where there 
is a sharp change in the direction of the curve. Let's do this now.

We loop through the numbers from 1 to 8, and for each number we go through the same 
process of instantiating a KMeans object and getting the inertia for that number of clusters. 
We then add that value to our inertia list, as illustrated in the following code snippet:

inertia = []

for i in range(1, 9):

    kmeans = KMeans(i)
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    kmeans.fit(sizes)

    inertia.append(kmeans.inertia_)

inertia

[85.5, 18.0, 10.5, 4.5, 2.5, 1.0, 0.5, 0.0]

As expected, our inertia improved from 85.5 to a perfect zero at the end. 

We now plot those to see where the elbow lies, as follows:

import plotly.graph_objects as go

fig = go.Figure()

fig.add_scatter(x=list(range(1, 9)), y=inertia)

fig.layout.xaxis.title = 'Number of clusters'

fig.layout.yaxis.title = 'Inertia'

fig.show()

Running the preceding code produces the chart shown in the following screenshot: 

Figure 9.4 – The "elbow" method, showing inertia values for all possible cluster numbers

You can clearly see a sudden drop when moving from 1 to 2 and that inertia keeps 
decreasing, but at a lower rate as we move toward the final value. So, three or maybe four 
clusters might be the point where we start to get diminishing returns, and that could be 
our optimal number of clusters. We also cheated a little by including one cluster, because 
we already knew that it would be the worst-performing number of clusters. You can see 
the same plot without the first value in the following screenshot:
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Figure 9.5 – The "elbow" method, showing inertia values for all possible cluster numbers excluding 1

This looks quite different and also shows that we cannot mechanically make a decision 
without knowing more about the data, the use case, and whatever constraints we might have.

The example we explored was extremely simple in terms of the number of observations, 
as well as the number of dimensions, which was one dimension. KMeans clustering (and 
machine learning in general) usually handles multiple dimensions, and the concept is 
basically the same: we try to find centers of clusters that minimize the distance between 
them and the data points. For example, the following screenshot shows what a similar 
problem might look like in two dimensions:

Figure 9.6 – Clustered points in two dimensions

This could correspond to additional measurements relating to our group of people. So, 
we might have their height on the x axis and their weight on the y axis, for example. You 
can imagine what KMeans would give us in this case. Of course, in real life, data is rarely 
so neatly clustered. You can also see how much accuracy we might lose by selecting the 
wrong number of clusters. If we specify three clusters, for example, the three blobs in the 
middle would probably be considered a single cluster, even though we can see that they 
are quite distinct from one another and that their points are quite close to each other. 
Also, if we specify seven or eight clusters, we could get unnecessary divisions between 
clusters, or we would have passed the elbow on the elbow chart in this case.

We are now ready to use this understanding of clustering in our dataset.
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Clustering countries by population
We will first understand this with one indicator that we are familiar with (population), and 
then make it interactive. We will cluster groups of countries based on their population.

Let's start with a possible practical situation. Imagine you were asked to group countries 
by population. You are supposed to have two groups of countries, of high and low 
populations. How do you do that? Where do you draw the line(s), and what does the total 
of the population have to be in order for it to qualify as "high"? Imagine that you were 
then asked to group countries into three or four groups based on their population. How 
would you update your clusters?

We can easily see how KMeans clustering is ideal for that.

Let's now do the same exercise with KMeans using one dimension, and then combine that 
with our knowledge of mapping, as follows:

1. Import pandas and open the poverty dataset, like this:

import pandas as pd

poverty = pd.read_csv('data/poverty.csv')

2. Create variables for the year and desired indicators, as follows:

year = 2018

indicators = ['Population, total']

3. Instantiate a KMeans object with the desired number of clusters, like this:

kmeans = KMeans(n_clusters=2)

4. Create a df object, which is the poverty DataFrame containing only countries 
and data from the selected year only. Run the following code to do this:

df = poverty[poverty['year'].eq(year) & poverty['is_
country']]

5. Create a data object, which is a list of columns that we choose (in this case, 
we only chose one). Note in the following code snippet that we get its values 
attribute, which returns the underlying NumPy array:

data = df[indicators].values

6. Fit the model to the data, as follows:

kmeans.fit(data)
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We have now trained the model on our data and are ready to visualize the results. 
Remember our discussion in Chapter 7, Exploring Map Plots and Enriching Your 
Dashboards with Markdown, that in order to create a map, we simply need a DataFrame 
with a column containing country names (or codes)? This is enough to produce a map. 
If we want to color our countries, we need another column (or any list-like object) 
containing corresponding values.

The kmeans object we just trained contains the labels of the countries and would tell 
us which country belongs to which cluster. We will use that to color countries, so we do 
this with one function call. Note that we can convert the labels to strings, which would 
cause Plotly Express to treat them as categorical and not continuous variables. The code is 
shown in the following snippet: 

px.choropleth(df,

              locations='Country Name',

              locationmode='country names',

              color=[str(x) for x in  kmeans.labels_])

This code produces the chart shown in the following screenshot: 

Figure 9.7 – Countries clustered by population
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Since we have already developed a template of options for maps, we can copy this and use 
it to enhance this map and make it consistent with the theme of our app. Let's use that and 
see the effect of having 1, 2, 3, and 4 clusters on the same map, and discuss the details. The 
following screenshot shows four maps, each with a different number of clusters:

Figure 9.8 – Countries clustered by population using different numbers of clusters

Important note
The colors may not be easy to distinguish on these maps if you are reading  
the grayscale version, and I encourage you to check out the online version  
and repository.

As you can see, coloring the map with one cluster (one label for all countries) produces 
a map with a single color. Things start to get interesting when there are two clusters 
involved, and this also makes intuitive sense. The two countries forming the cluster 
with a higher population (namely, China and India) have very large populations that are 
also close to each other—1.39 billion and 1.35 billion, in this case. The third country, 
the United States (US), has a population of 327 million. This is exactly what KMeans is 
supposed to do. It gave us two groups of countries where countries in each cluster are very 
close to each other and far from countries in the other cluster. Of course, we introduced 
an important bias by selecting two as the number of clusters, and we saw how that might 
not be the optimal case.
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When we chose three clusters, we can see that we have a medium-population cluster, with 
the US being one of them. Then, when we chose four, you can see that Russia and Japan 
were moved to the third category, even though they were in the second category when we 
had three clusters.

We now have enough code and knowledge to take this to the next level. We want to give 
our users the option to select the number of clusters and indicator(s) that they want. We 
need to address some issues in our data first, so let's explore that.

Preparing data with scikit-learn
scikit-learn is one of the most widely used and comprehensive machine learning 
libraries in Python. It plays very well with the rest of the data-science ecosystem libraries, 
such as NumPy, pandas, and matplotlib. We will be using it for modeling our data 
and for some preprocessing as well.

We now have two issues that we need to tackle first: missing values and scaling data. Let's 
see two simple examples for each, and then tackle them in our dataset. Let's start with 
missing values.

Handling missing values
Models need data, and they can't know what to do with a set of numbers containing 
missing values. In such cases (and there are many in our dataset), we need to make a 
decision on what to do with those missing values.

There are several options, and the right choice depends on the application as well as 
the nature of the data, but we won't get into those details. For simplicity, we will make a 
generic choice of replacing missing data with suitable values.

Let's explore how we can impute missing values with a simple example, as follows:

1. Create a simple dataset containing a missing value, in a suitable format, as 
illustrated in the following code snippet:

data = np.array([1, 2, 1, 2, np.nan]).reshape(-1, 1)

2. Import the SimpleImputer for scikit-learn, as follows:

from sklearn.impute import SimpleImputer
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3. Create an instance of this class with a mean strategy, which is the default. As you 
might have guessed, there are other strategies for imputing missing values. The code 
is shown in the following snippet:

imp = SimpleImputer(strategy='mean')

4. Fit the model to the data. This is where the model learns the data, given the conditions 
and options we set while instantiating it. The code is shown in the following snippet:

imp.fit(data)

5. Transform the data. Now that the model has learned the data, it is able to transform 
it according to the rules that we set. The transform method exists in many 
models and has a different meaning, depending on the context. In this case, 
transforming means imputing the missing data, using the mean strategy. The code 
can be seen in the following snippet:

imp.transform(data)

array([[1. ],

       [2. ],

       [1. ],

       [2. ],

       [1.5]])

As you can see, the model has transformed the data by replacing the missing value with 1.5. 
If you look at the other non-missing values [1, 2, 1, 2], you can easily see that their mean is 
1.5, and this is the result that we got. We could have specified a different strategy for imputing 
missing values, such as the median or the most frequent strategy. Each has its own advantages 
and disadvantages; we are simply exploring what can be done with machine learning in Dash.

Next, we move on to scaling our data.

Scaling data with scikit-learn
In Figure 9.6, we saw how clustering might look in two dimensions. If we want to cluster 
our poverty data by two indicators, one of them would be on the x axis and the other 
would be on the y axis. Now, imagine if we had a population on one of the axes and a 
percentage indicator on the other axis. The data on the population axis would range from 
0 to 1.4 billion, and the data on the other axis would range from 0 to 1 (or from 0 to 100).  
Any differences in the percentage indicator would have negligible influence on the 
distances, and the means would mainly be calculated using the disproportionate size of 
the population numbers. One solution to this problem is to scale values.
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There are different strategies for scaling data and we will explore one of them—namely, 
standard scaling. The StandardScaler class assigns z-scores (or standard scores) to the 
data points and normalizes them. The z-score is simply calculated by subtracting each value 
from the mean and dividing by the standard deviation. There are other ways of calculating 
this but we will focus on a simple example to better illustrate this concept, as follows:

1. Create a simple dataset, like this:

data = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)

2. Import StandardScaler and create an instance of it, like this:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

3. Fit scaler to the data and transform it. For convenience, many models that have a 
fit and a transform method and also have a fit_transform method, which 
we will use now, as follows:

scaler.fit_transform(data)

array([[-1.41421356],

       [-0.70710678],

       [ 0.        ],

       [ 0.70710678],

       [ 1.41421356]])

We have now transformed our numbers to their equivalent z-scores. Note that the mean 
value 3 has now become 0. Anything higher than 3 is positive, and anything lower is 
negative. The numbers also indicate how far (high or low) the corresponding value is from 
the mean.

This way, when we have multiple features in our dataset, we can normalize them, compare 
them, and use them together. At the end of the day, what we care about is how extreme a 
certain value is and how close it is to the mean. A country with a Gini index of 90 is a very 
extreme case. It's as extreme as a country with a population of 1 billion. If we use those 
two together, the 1 billion will dominate and distort the calculation. Standardization helps 
us achieve a better way of dealing with data at different scales. It's still not perfect but is 
a very big improvement over using data in different scales. Now, we are able to use more 
than one feature while clustering our data.
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Creating an interactive KMeans clustering app
Let's now put everything together and make an interactive clustering application using our 
dataset. We will give users the option to choose the year, as well as the indicator(s) that 
they want. They can also select the number of clusters and get a visual representation of 
those clusters, in the form of a colored choropleth map, based on the discovered clusters.

Please note that it is challenging to interpret such results with multiple indicators because 
we will be handling more than one dimension. It can also be difficult if you are not an 
economist and don't know which indicators make sense to be checked with which other 
indicators, and so on.

The following screenshot shows what we will be working toward:

Figure 9.9 – An interactive KMeans clustering application

As you can see, this is a fairly rich application in terms of the combinations of options that 
it provides. As I also mentioned, it's not straightforward to interpret, but as mentioned 
several times in the chapter, we are simply exploring what can be done with only one 
technique and using only some of its options.
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We have created many sliders and dropdowns so far in the book, so we won't go into how 
to make them. We will simply make sure we have descriptive IDs for them, and I'll leave 
it to you to fill in the blanks. As shown in the preceding screenshot, we have two sliders, 
one dropdown, and one graph component, so let's set ID names for them. As usual, the 
following components should go wherever you want them to be in app.layout:

dcc.Slider(id='year_cluster_slider', …),

dcc.Slider(id='ncluster_cluster_slider', …),

dcc.Dropdown(id='cluster_indicator_dropdown', …),

dcc.Graph(id='clustered_map_chart', …)

We will now go through creating our callback function step by step, as follows: 

1. Associate the inputs and outputs in the callback, as follows: 

@app.callback(Output('clustered_map_chart', 'figure'),

              Input('year_cluster_slider', 'value'),

              Input('ncluster_cluster_slider', 'value'),

              Input('cluster_indicator_dropdown', 
'value'))

2. Create the signature of the function with suitable parameter names, as follows: 

def clustered_map(year, n_clusters, indicators):

3. Instantiate a missing values imputer, a standard scaler, and a KMeans object. Note 
that with SimpleImputer, we also specify how missing values are encoded. In 
this case, they are encoded as np.nan, but in other cases they might be encoded 
differently, such as N/A, 0, -1, or others. The code is shown in the following snippet:

imp = SimpleImputer(missing_values=np.nan, 
strategy='mean')

scaler = StandardScaler()

kmeans = KMeans(n_clusters=n_clusters)

4. Create df, a subset of poverty that has only country's data and data from the 
selected year, and then select the year and Country Name columns, and the 
selected indicators. The code is shown in the following snippet: 

df = poverty[poverty['is_country'] & poverty['year'].
eq(year)][indicators + ['Country Name', 'year']]
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5. Create data, a subset of df that only contains the selected indicators' columns. The 
reason we have two distinct objects is that df is going to be used for plotting the 
map and will also use the year and country name. At the same time, data will only 
contain numeric values in order for our models to work with it. The code can be 
seen here:

data = df[indicators]

6. In some cases, as we saw several times in the book, we might come across a situation 
where we have a column that is completely empty. In this case, we can't impute any 
missing values because we don't have a mean, and we have absolutely no clue what 
to do with it. In this case, I think it's best to not produce a chart and inform the 
user that for the selected combination of options, there is not enough data to run 
the models. We first check if we have such a situation. DataFrame objects have an 
isna method. When we run it, it returns the same DataFrame filled with True 
and False values, indicating whether or not the respective value is missing. We 
then run the all method on the resulting DataFrame. This will tell us if all values 
are missing for each column. Now, we have a pandas Series with True and False 
values. We check if any of them is True by using the any method. In this case, we 
create an empty chart with an informative title, as follows:

if df.isna().all().any():

    return px.scatter(title='No available data for the 
selected combination of year/indicators.')

7. If everything went fine, and we don't have a column with all its values missing, 
we proceed by creating a variable that has no missing values (imputed if some are 
missing), as follows: 

data_no_na = imp.fit_transform(data)

8. Next, we scale data_no_na using our instance of StandardScaler, like this:

scaled_data = scaler.fit_transform(data_no_na)

9. Then, we fit the model to our scaled data, as follows:

kmeans.fit(scaled_data)
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10. We now have everything we need to produce our chart—most importantly, the 
labels_ attribute—and we can do so with a single call to px.choropleth. 
There is nothing new in the options we use in this function, as you can observe in 
the following code snippet: 

fig = px.choropleth(df,

                    locations='Country Name',

                    locationmode='country names',

                    color=[str(x) for x in  kmeans.
labels_],

                    labels={'color': 'Cluster'},

                    hover_data=indicators,

                    height=650,

                    title=f'Country clusters - {year}. 
Number of clusters: {n_clusters}<br>Inertia: {kmeans.
inertia_:,.2f}')

After that, we copy the geographic attributes we already used to customize the map and 
make it consistent with the app as a whole.

Here is the full function, including the geographic options for your reference: 

@app.callback(Output('clustered_map_chart', 'figure'),

              Input('year_cluster_slider', 'value'),

              Input('ncluster_cluster_slider', 'value'),

              Input('cluster_indicator_dropdown', 'value'))

def clustered_map(year, n_clusters, indicators):

    imp = SimpleImputer(missing_values=np.nan, strategy='mean')

    scaler = StandardScaler()

    kmeans = KMeans(n_clusters=n_clusters)

    df = poverty[poverty['is_country'] & poverty['year'].
eq(year)][indicators + ['Country Name', 'year']]

    data = df[indicators]

    if df.isna().all().any():

        return px.scatter(title='No available data for the 
selected combination of year/indicators.')

    data_no_na = imp.fit_transform(data)

    scaled_data = scaler.fit_transform(data_no_na)

    kmeans.fit(scaled_data)
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    fig = px.choropleth(df,

                        locations='Country Name',

                        locationmode='country names',

                        color=[str(x) for x in  kmeans.
labels_],

                        labels={'color': 'Cluster'},

                        hover_data=indicators,

                        height=650,

                        title=f'Country clusters - {year}. 
Number of clusters: {n_clusters}<br>Inertia: {kmeans.
inertia_:,.2f}',

                  color_discrete_sequence=px.colors.
qualitative.T10)

    fig.layout.geo.showframe = False

    fig.layout.geo.showcountries = True

    fig.layout.geo.projection.type = 'natural earth'

    fig.layout.geo.lataxis.range = [-53, 76]

    fig.layout.geo.lonaxis.range = [-137, 168]

    fig.layout.geo.landcolor = 'white'

    fig.layout.geo.bgcolor = '#E5ECF6'

    fig.layout.paper_bgcolor = '#E5ECF6'

    fig.layout.geo.countrycolor = 'gray'

    fig.layout.geo.coastlinecolor = 'gray'

    return fig

We have made a big jump in this chapter in what can be visualized and interactively 
explored. We also got a minimal introduction to a single machine learning technique to 
cluster our data. Ideally, the options provided to your users will depend on the discipline 
you are working in. You might be an expert yourself in the domain you are dealing with, 
or you might work closely with such an expert. It is not only a matter of visualization 
and statistics, but domain knowledge is also a crucial aspect of analyzing data, and with 
machine learning this is critical.

I encourage you to learn more and see what you can achieve. Having the skills to create 
interactive dashboards is a big advantage for running machine learning models, as we saw, 
and allows you to discover trends and make decisions at a much faster rate. Eventually, 
you will be able to create automated solutions that provide recommendations, or make 
certain decisions based on certain inputs.

Let's now recap on what we learned in this chapter.
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Summary
We first got an idea of how clustering works. We built the simplest possible model for a 
tiny dataset. We ran the model a few times and evaluated the performance and outcomes 
for each of the numbers of clusters that we chose.

We then explored the elbow technique to evaluate different clusters and saw how we might 
discover the point of diminishing returns, where not much improvement is achieved by 
adding new clusters. With that knowledge, we used the same technique for clustering 
countries by a metric with which most of us are familiar and got firsthand experience in 
how it might work on real data.

After that, we planned an interactive KMeans app and explored two techniques for 
preparing data before running our model. We mainly explored imputing missing values 
and scaling data.

This gave us enough knowledge to get our data in a suitable format for us to create our 
interactive app, which we did at the end of the chapter.

We next explored advanced features of Dash callbacks—most notably, pattern-matching 
callbacks. The callbacks we have run so far have been straightforward and fixed. Many 
times, we want to create more dynamic interfaces for our users. For example, based on the 
selection of a certain value in a dropdown, we might want to display a special type of chart 
or create another dropdown. We will explore how this works in the next chapter.





10
Turbo-charge  

Your Apps with 
Advanced Callbacks

We will now take our apps to a new level of abstraction and power by introducing new 
options available to callbacks. The general pattern we have followed has been that we 
provide users with a component that they can interact with. Based on a given set of 
options available to the component, users can influence certain actions, such as producing 
a chart, for example. We will be exploring other options such as deferring the execution 
of callbacks until a certain event happens, for example, clicking a "Submit" button. We 
will also take a look at how we can allow users to modify the layout of the app itself, by 
allowing them to add new dynamic components to it. We will use some of this knowledge 
to add a minor but important improvement to the clustering functionality that we 
introduced in Chapter 9, Letting Your Data Speak for Itself with Machine Learning.
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We will first start by introducing the optional State parameter in our callbacks. So far, all 
of our callbacks fire immediately when the user makes changes to any of the inputs. In 
many cases, we want the users to set a few options and only then hit a "Submit" button to 
invoke the callback function. This becomes important when we have multiple inputs where 
it might be annoying or awkward if outputs change while users are still making changes. In 
other cases, those callbacks might take a long time to execute and/or be expensive to run. 
Again, in this case, we want to block the execution until the user decides to trigger it.

Once the concept of State has been established, we will explore a new type of dynamic 
callbacks that enable our users to make changes to the app, by adding new charts for 
example. So far, we have allowed the users to simply modify the input values available 
in the interactive components. We can take this to a new level by introducing dynamic 
components that are generated based on the user's interactions.

Finally, we will get an overview of pattern-matching callbacks, which allow us to link 
dynamically created and interactive components together in a streamlined way.

Here are the main topics that we will cover in this chapter:

• Understanding State

• Creating components that control other components

• Allowing users to add dynamic components to the app

• Introducing pattern-matching callbacks

Technical requirements
We will be using the same basic tools that we have used in most chapters so far, and 
mainly focus on some new features in callback functions. We will use Dash, Dash HTML 
Components, Dash Core Components, and Dash Bootstrap Components for making our 
apps. For data manipulation, we will use pandas. For the charts and visualizations, we 
will be using Plotly and Plotly Express, and finally, we will use JupyterLab to interactively 
explore and create new functionality independently, before incorporating it into our app.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_10.

Check out the following video to see the Code in Action at https://bit.ly/3v6ZYJw.

Let's start by getting familiar with State.

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_10
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_10
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_10
https://bit.ly/3v6ZYJw
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Understanding State
The typical callback function structure that we used so far contained one or more Output 
elements and one or more Input elements. As mentioned in the introduction, the 
callbacks fire immediately when users modify an Input element. We want to relax this 
option a little. We will start with a simple example demonstrating why and how to use 
State, which is an optional argument that can be given to our callbacks.

To make the problem we are trying to solve clear, take a look at Figure 10.1:

Figure 10.1 – An interactive app with outputs that are not properly synchronized with input values

As you can see, the output is showing the wrong values. The reason is that the app was 
made very slow by introducing a waiting time, to simulate a practical situation that you 
might face with your apps. The output was not wrong, actually; it just took too long to 
update, so when the input was changed, it wasn't immediately reflected in the output area. 
This is more important in this case because there are two inputs governing the output. The 
interval between modifying the first and second output might cause such confusion.

Another more important issue is that these options might take much more time and cost 
a lot in terms of lost computing power and/or lost analyst time. Our dataset is very small, 
and the types of calculations we ran on it are also very simple, so performance was not an 
issue. In practical situations, you will more likely deal with much larger datasets and run 
computations that take a considerable amount of time. For example, changing the number 
of clusters to update our model took a really negligible amount of time. In reality, that 
might take seconds, minutes, or even more. We will solve this by adding a "Submit" button 
and introducing State to our callback function.
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Buttons are available as HTML components from the Dash HTML Components package. 
They can also be used through Dash Bootstrap Components. Using the latter has two 
advantages. First, they integrate well with the theme you are using, so this takes care of 
visual consistency. Also, and this is probably more important, they easily get one of the 
meaningful colors in case you want to communicate "success," "warning," "danger," or any 
of the other available colors/messages.

Buttons are available as dcc.Button or dbc.Button. Let's see how they can be used to 
control the behavior of our app.

We need to first clarify the difference between Input and State in our callbacks.

Understanding the difference between Input and State
First, keep in mind that Input is what triggers the function, and that State is simply a 
set of conditions that the app is in. It is up to us to decide which components functions as 
State and which as Input. 

Let's update the guidelines for callback functions to clarify the distinction that was  
just introduced:

• The order of callback arguments has to always be one or more of Output, Input, 
and optionally State arguments, in that order. If we have multiple elements of any 
one of them, they all need to follow one another.

• State is optional.

• The Input element(s) is what triggers the callback to fire. Changing any or all of 
the State in the app would not cause the execution of the callback.

• Once an Input element is modified, the callback will be triggered with whatever 
State has been changed since it was last triggered.

Let's now see how to produce the code for the app shown in Figure 10.1, and then modify 
it for the desired behavior. The callback function currently looks like this:

@app.callback(Output('output', 'children'),

              Input('dropdown', 'value'),

              Input('textarea', 'value'))

def display_values(dropdown_val, textarea_val):

    return f'You chose "{dropdown_val}" from the dropdown, and 
wrote "{textarea_val}" in the textarea.'
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This is how we have managed all callbacks so far. Note that the callback will run if either 
of the two inputs were modified. The change we want to introduce will require two steps: 

1. Add a button component to the page, placed under the Textarea component: 

import dash_bootstrap_components as dbc

dbc.Button("Submit", id="button")

# OR

import dash_html_components as html

html.Button("Submit", id="button")

2. Add the button as an Input argument to the callback function. We now introduce 
a new property that we haven't seen yet, which is n_clicks. As the name 
suggests, this corresponds to the number of clicks that were made on a certain 
component during its lifetime in the user session. With every click, the number gets 
incremented by one, and we can use that variable to check and control the callback's 
behavior. Note that we can also give it a default starting value, typically zero, but we 
can give it another number if we want:

Input("button", "n_clicks")

3. Now that we have made the button our Input, we want to keep Dropdown and 
Textarea, but make them State arguments as follows:

@app.callback(Output('output', 'children'),

              Input('button', 'n_clicks'),

              State('dropdown', 'value'),

              State('textarea', 'value'))

4. With these changes, the callback now waits for Input to be changed. The user can 
change Dropdown and/or Textarea as many times as they want without being 
interrupted, and when they are ready, they can hit the "Submit" button to get the 
desired result.
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5. When the app loads for the first time, the default value of the n_clicks property 
is None. Also, we have nothing in the Textarea component and there are 
no options selected from the dropdown yet. So, we do as usual: we use raise 
PreventUpdate if we don't have a value for n_clicks. To update the function 
we introduced, we can simply introduce the following change to the signature of the 
function. Note the addition of the corresponding n_clicks argument, as well as 
its relative order:

def display_values(n_clicks, dropdown_val, textarea_val):

    if not n_clicks:

        raise PreventUpdate

    return … 

If we update the code, we can see that things will work as expected and the user will be 
more in control of the process. Figure 10.2 shows the updated functionality: 

Figure 10.2 – An interactive app with outputs now properly displaying the expected input values

We can improve this experience even more by providing the user with a visual cue, 
indicating that some processing is underway.

With this new knowledge fresh in mind, let's use it to modify the behavior of our 
clustering functionality that we discussed in the introduction to this chapter. Figure 10.3 
shows the desired outcome that we want to achieve:
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Figure 10.3 – The clustering functionality with a Submit button and a visual progress indicator

As you can see, we have introduced two new features. The first is the button that we 
have already discussed and implemented in our independent small app. The second is 
the Dash Core Components Loading component. This component is responsible for 
displaying the symbol that is seen moving, or sometimes spinning, where the output is 
expected to appear. Using it is extremely simple, but it's also crucial in such cases as this. 
It's always good to confirm to users that their selection (or any other interaction) has 
been acknowledged and is under process. Actually, I think it's good to use the Loading 
component on all outputs to give this confirmation to users. It's very easy to implement, 
and this is how we can update the app to reflect this functionality: 

import dash_core_components as dcc

dcc.Loading([

    dcc.Graph(id='clustered_map_chart')

])

The Graph component already exists in our app; we just need to add it as the children 
argument to the Loading component as you can see in the preceding code. This will cause 
the animated symbol to remain animated until the underlying object appears in its place.

Let's now modify the callback function to make the desired change:

@app.callback(Output('clustered_map_chart', 'figure'),

              Input('clustering_submit_button', 'n_clicks'),

              State('year_cluster_slider', 'value'),

              State('ncluster_cluster_slider', 'value'),

              State('cluster_indicator_dropdown', 'value'))

def clustered_map(n_clicks, year, n_clusters, indicators):
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We basically made two changes. We first introduced clustering_submit_button as an 
Input element and renamed each of the other arguments from Input to State. The other 
change is passing n_clicks as the first argument to the function signature. Remember that 
the names of the arguments can be anything, and what matters is their order. We gave them 
clear names so we can easily refer to them and manage them in the body of the function.

You have now modified the clustering functionality, giving the user more control and 
making it visually clearer with the Loading component. Feel free to add it wherever you 
want in the app.

Now we can take our callbacks to another interesting level.

Creating components that control other 
components
How about we provide an interactive component on the page where its values (set by the 
user) serve as inputs to another function, which is in turn responsible for the final output? 
Figure 10.4 shows what the result looks like, and following that is a discussion of the 
details and implementation:

Figure 10.4 – An app with a component that dynamically determines the values of another component
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Let's go through the visual elements of this app's layout, one by one: 

1. Success message: The green strip at the top doesn't appear when the app loads. 
It only appears after the user adds the options to the dropdown and hits the Set 
options button. Note that there is a dynamic message showing the user the values 
that they added. Also, note that the alert message is "dismissable." We have the x 
symbol on the right, allowing the user to remove this message.

2. Instruction line: A simple message telling the user that they can add text in the 
Textarea component, which will be used to feed into the options property of 
the Dropdown component underneath it. At this point in the app, Dropdown is 
empty and has no options to choose from, and the Graph component also shows an 
empty chart.

3. The Set options button: Once the user adds a set of options to Textarea and hits 
this button, those lines will become options in Dropdown.

4. The resulting chart: We have used the three-letter country codes here. The user 
inputs whichever country codes they want, and these become options to the 
Dropdown component. After that, choosing a certain country code filters the 
dataset by getting rows where the country code is equal to the user's selection. It 
then uses the resulting DataFrame to create the chart at the end.

There is not much practical value in such an app, as it would have been much easier to 
simply provide the options in a Dropdown component and produce the chart. We are 
simply doing this to demonstrate the new options that we can utilize and doing so with a 
dataset with which we are familiar. There is also a big potential for errors. What if the user 
doesn't know the code for a certain country? What if they make a typo? Again, this is just 
for demonstration purposes.

This app can be written in around 30 lines of code and gives us two layers of options, 
where one depends on the other. One set of options "waits" and depends on the others to 
produce its outputs accordingly.
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We now code the layout of the app, and after that we create the two callback functions that 
make it interactive:

1. Run the necessary imports:

from jupyter_dash import JupyterDash

import dash_core_components as dcc

import dash_html_components as html

import dash_bootstrap_components as dbc

import pandas as pd

poverty = pd.read_csv('data/poverty.csv')

2. Create an app and its layout. All the following elements go into the app's layout:

app = JupyterDash(__name__,

                  external_stylesheets=[dbc.themes.
COSMO])

app.layout = html.Div([

    component_1,

    component_2

    …

])

3. Create an empty div that will contain the success message:

html.Div(id='feedback')

4. Create a Label component, telling the user how to interact with the app:

dbc.Label("Create your own dropdown, add options one per 
line:")

5. Create an empty Textarea component. Note that this is also available and similar 
to the component of the same name, belonging to Dash Core Components:

dbc.Textarea(id='text', cols=40, rows=5)

6. Add a button for generating the dropdown and its options:

dbc.Button("Set options", id='button')
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7. Create an empty Dropdown:

dcc.Dropdown(id='dropdown')

8. Create an empty Graph component:

dcc.Graph(id=chart')

This should be enough for the visual elements of our app. We now need two functions to 
create the interactivity we want:

1. set_dropdown_options: This function will take the lines from Textarea as 
input and return a list of options to be fed to the Dropdown component.

2. create_population_chart: This function takes its input from the Dropdown 
component and generates a population chart below it.

We now start with the first one:

1. Create the callback with the appropriate Output, Input, and State arguments. 
We have two outputs that this function affects. The first is the options property  
of the Dropdown component. The second is the div containing the success  
message. For our Input, we will have the button, and our State will be the 
Textarea component: 

@app.callback(Output('dropdown', 'options'),

              Output('feedback', 'children'),

              Input('button', 'n_clicks'),

              State('text', 'value'))

2. Create the function signature with appropriate argument names:

def set_dropdown_options(n_clicks, options):

3. Create a variable holding the text provided as a list. We achieve that by splitting 
the incoming text from Textarea. We also make sure to check for the case of not 
having any clicks and use raise PreventUpdate in that case:

if not n_clicks:

    raise PreventUpdate

text = options.split()
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4. Create the success message as an Alert component, which is available from Dash 
Bootstrap Components. Note that we also color it with a "color" called "success." 
Naturally, you can also think of additional functionality that checks for valid inputs, 
and if it doesn't get one, the color of the message would be "warning" or "danger," 
for example. Note that the text also dynamically adds the comma-separated options 
that were provided by the user. We also set dismissable=True to allow users to 
remove it from the page if they want to:

message = dbc.Alert(f"Success! you added the options: {', 
'.join(text)}",

                    color='success',

                    dismissable=True)

5. Create the options list that will set the options property of the currently empty 
Dropdown component. We use the text variable for that:

options = [{'label': t, 'value': t} for t in text]

6. Return the tuple of options and message:

return options, message

Let's now turn to our other function, which will take the selected country code, and use it 
to generate the chart:

1. Create the callback with the required Output and Input:

@app.callback(Output('chart', 'figure'),

              Input('dropdown', 'value'))

2. Create the function signature as well as the check for the availability of a value from 
the dropdown: 

def create_population_chart(country_code):

    if not country_code:

        raise PreventUpdate

3. Create the required DataFrame subset based on the input value:

df = poverty[poverty['Country Code']==country_code]
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4. Return a chart with the appropriate values:

return px.line(df,

               x='year',

               y='Population, total',

               title=f"Population of {country_code}")

We can now run the preceding code and create the desired app.

To better understand the structure of our app, and to get used to inspecting our callback 
chains, we can run the app in debug mode by running app.run_server(debug=True) 
and see how inputs and outputs relate to one another in Figure 10.5:

Figure 10.5 – App callback graph

You can easily see the names of the components and their IDs as specified in our code. 
You can easily trace the sequence of events, starting from the bottom left, following the 
arrows to the top right of the diagram.

We saw how we can create dynamic options in certain components that depend on other 
components for their values. Dash neatly handled the behavior of components and 
properly triggered the right functions when their inputs were available.
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Let's take things to an even more abstract and powerful level. Let's now allow users to add 
full components by clicking a button.

Allowing users to add dynamic components to 
the app
Not only will users be able to add components to the app's layout, but the components' 
contents will also be dynamically generated. Take a look at Figure 10.6 for the simplest 
example that we will start with:

Figure 10.6 – An app allowing users to add components to the app's layout

Although extremely simple, the charts in this app have different dynamic names, as you 
can see in the chart titles. This was based on the dynamic value of n_clicks, which 
changes on every click.
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The amount of code required to generate this is similar to any simple app; there isn't much 
complexity involved. We just need to look at it with fresh eyes. Let's start by coding the 
layout, which will consist of two simple components:

1. Create a button to trigger the addition of new charts: 

dbc.Button("Add Chart", id='button')

2. Create an empty div, with its children attribute set to an empty list. The empty 
list is the key element that we will be working with: 

html.Div(id='output', children=[])

When this app loads for the first time, the user only sees a button that they can use to  
add a chart. The area below it gets populated with an additional chart every time they click 
the button.

Let's now create the callback function for this app:

1. Create the Output, Input, and State arguments as usual. The interesting part to 
notice here is that the children property of the empty div acts both as Output 
and as State. We usually take some component's value and use it to influence or 
change another component in the app. Who said we can't take a component, make a 
change to it, and return it back to where it came from in its new state? This is exactly 
what we will do:

@app.callback(Output('output', 'children'),

              Input('button', 'n_clicks'),

              State('output', 'children'))

2. Create the function signature and check for n_clicks. Note here that children 
is acting as State in this case:

def add_new_chart(n_clicks, children):

    if not n_clicks:

        raise PreventUpdate

3. Create an empty bar chart with a dynamic title, using the n_clicks property:

new_chart = dcc.Graph(figure=px.bar(title=f"Chart {n_
clicks}"))
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4. Append the new chart to the children component. If you remember, we set the 
initial value of children in the empty div as an empty list. The following line will 
take this list and append new_chart to it. There is nothing special about this; we 
are simply using Python's list.append method:

children.append(new_chart)

5. Now that our children list has been mutated by appending a new item to it, we 
simply return it. Keep in mind that the return value of the callback function will go 
to the div, and so now it is acting as an output:

return children

Note that this functionality was created by the application of simple principles. We aren't 
using any new features here. The first technique was passing children to our callback, 
and receiving it from the other side. The second one was using the n_clicks property to 
dynamically set the titles of the charts.

The diagram in Figure 10.7 shows the relationship between the elements we created:

Figure 10.7 – A callback function graph where a function returned a component that it received and 
mutated

This diagram will remain the same regardless of the number of charts that were added to 
the app. This means you don't have to worry about managing as many callback functions 
as there are clicks.

If you are ready to take this even further, we can add another component under each chart, 
for example, a Dropdown component. And we can let the dropdown's selected value 
produce a chart. Each dropdown value will be independent of the others (if added by the 
user) and will only modify the chart it belongs to. The good news is that all this will also be 
managed with one additional callback function utilizing pattern-matching callbacks.
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Introducing pattern-matching callbacks
Mastering this feature, and here we are dealing with a truly new feature, will allow you 
to take your apps to a new level of interactivity and power. The most important feature 
of this capability is that it allows us to handle the interactivity of components that didn't 
exist before. As we've done so far, when we allowed users to create new charts by clicking 
a button, those components did not exist before in the app. The more interesting thing 
is that the callback function that handles them all is as simple as any other callback that 
takes values from a dropdown and produces a chart. The trick is in slightly changing the 
id attribute of our components.

So far, we have set the id attributes as strings, and the only requirement was that they 
be unique. We will now introduce a new way of creating this attribute, which is by using 
dictionaries. Let's first take a look at the end goal, then modify the layout, the callbacks, 
and finally, discuss the new way of handling the id property. Figure 10.8 shows what our 
app will look like:

Figure 10.8 – An app allowing users to add interactive components to the app's layout
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In the previous app, we were able to let the user generate new components on the fly, and 
their content could be dynamic as well. We demonstrated this with chart titles, using 
the n_clicks property to set the title dynamically. But after adding those charts, the 
user couldn't interact with them. In other words, they are dynamically generated, with 
potentially dynamic content, but once generated, they are static, and we cannot interact 
with them.

The improvement we are now introducing is that we are making those charts interactive 
(using the dropdowns) and having each of them linked to a single component, a 
dropdown in this case. As you can see in Figure 10.8, each chart comes with its own 
dropdown, and the user can independently generate multiple charts on top of one another 
and compare. After that, they can do even more, by selecting different countries on 
different charts. Of course, you can imagine a more involved set of apps where users can 
do many other things. 

The new additions to create this new functionality will be done in three steps:

1. Modify the add_new_chart function: This will simply consist of adding a 
dropdown under each chart and appending two components, instead of one. Note 
that the layout is exactly the same. We simply have a button and an empty div 
underneath it.

2. Create a new callback function: This will link the newly generated pairs of charts 
and dropdowns to determine their behavior.

3. Modify the id attributes in the app: This is where we introduce the new 
functionality and is the main feature that allows us to manage as many additional 
components and their interactivity using a single callback function.

We first start by modifying the add_new_chart callback function:

1. We defined new_chart in the function, and this remains the same. Right under 
that, we want to add new_dropdown for users to select the country that they want 
to visualize:

new_chart = dcc.Graph(figure=px.bar(title=f"Chart {n_
clicks}"))

countries = poverty[poverty['is_country']]['Country 
Name'].drop_duplicates().sort_values()
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new_dropdown = dcc.Dropdown(options=[{'label': c, 
'value': c}

                            for c in countries])

2. Append the new components. In the first example, we appended new_chart, 
but this time, we want to append the two items. The only thing to modify is to put 
the two new components in a new div and append the new div. This way, we are 
effectively appending one element (the div that contains two elements):

children.append(html.Div([

    new_chart,

    new_dropdown

]))

This is enough to cause the button to append two items for each click. As you can see, 
the change was very simple. However, we will later come to set the id attributes for these 
components in order to make them dynamically interactive.

Now we have pairs of components added with every click on our button. One of them 
has to be an Output element (Graph), and the other has to be an Input element 
(Dropdown). As with every other interactivity feature, they need to be linked with a 
callback function. We will create this now, and after that, we will take a look at how to link 
those dynamic IDs together and manage how the two callbacks interact with each other. 
The function is as simple as any callback that we have created so far. Here it is, but without 
the decorator, which we will discuss right after: 

def create_population_chart(country):

    if not country:

        raise PreventUpdate

    df = poverty[poverty['Country Name']==country]

    fig = px.line(df, 

                  x='year', y='Population, total',

                  title=f'Population of {country}')

    return fig
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Figure 10.9 contains a diagram showing our pattern-matching callback function:

Figure 10.9 – The callback graph of a pattern-matching callback

The top graph in Figure 10.9 is exactly the same as the one in Figure 10.7. It is for the 
simple function that adds new charts by appending them to the children of the empty div. 
Note that the id attributes are labeled above each box representing a component. Here 
they are button and output.

The graph for the second callback, create_population_chart, shows a similar 
structure, but the IDs are dictionaries and not strings.

Pattern-matching callbacks use those dictionaries to map the different elements together. 
Let's unpack those dictionaries and then see how they fit into the callbacks.

The first one is {"index": MATCH, "type": "dropdown"}. I believe the type 
key is clear. We use it to make it easy to identify other components whose "type" is 
"dropdown." It's important to note that these names could be anything, but obviously we 
would want meaningful and helpful names. The other dictionary has chart for its type key. 
Again, this is also flexible, but I think it's clear here which elements we are referring to.

Now we want to have independent functionality for each pair of components. In other 
words, we want the user to be able to modify the second dropdown, generating whatever 
chart they want, without that action affecting any other components in the app. How do 
we achieve that? We simply tell Dash to match them, with MATCH. This again belongs 
to an arbitrarily named key, index in this case. But MATCH is a wildcard object that is 
available in the dash.dependencies module. There are also ALL and ALLSMALLER, 
which work in a similar way with slight differences, but we will mainly focus on MATCH. 
Now let's take a look at how the updated functions need to be specified to cater to those 
IDs. The good news is that the only things we have to change are the id attributes of the 
relevant components and pass them to the relevant callback function arguments.
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We are now ready to add the proper id attributes to complete the pattern-matching 
callbacks. The first function, add_new_chart, takes the new dictionary id attributes for 
the inner components that we allow the user to add to the app. Note here that the "index" 
key takes n_clicks as its value. This value, as we saw several times, is dynamic and 
changes every time the user clicks the button. This means that every time the user clicks 
the button, we have a new unique ID with which we can identify this component:

def add_new_chart(n_clicks, children):

    new_chart = dcc.Graph(id={'type': 'chart',

                              'index': n_clicks},

                          figure=px.bar())

    new_dropdown = dcc.Dropdown(id={'type': 'dropdown',

                                    'index': n_clicks},

                                options=[option_1, option_2, 
…])

Now we have to map those IDs properly in the second function that is responsible for 
managing their interactivity. The "type" key will be used to map "chart" to "chart"  
and "dropdown" to "dropdown". As for n_clicks, since it is dynamic, we match it  
with MATCH:

@app.callback(Output({'type': 'chart', 'index': MATCH}, 
'figure'),

              Input({'type': 'dropdown', 'index': MATCH}, 
'value'))

def create_population_chart(country):

    …

Here you can find the full code for the two functions as a reference to get the full picture: 

from dash.dependencies import Output, Input, State, MATCH

@app.callback(Output('output', 'children'),

              Input('button', 'n_clicks'),

              State('output', 'children'))

def add_new_chart(n_clicks, children):

    if not n_clicks:

        raise PreventUpdate

    new_chart = dcc.Graph(id={'type': 'chart',

                              'index': n_clicks},
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                          figure=px.bar(title=f"Chart {n_
clicks}"))

    countries = poverty[poverty['is_country']]['Country Name'].
drop_duplicates().sort_values()

    new_dropdown = dcc.Dropdown(id={'type': 'dropdown',

                                    'index': n_clicks},

                                options=[{'label': c, 'value': 
c}

                                         for c in countries])

    children.append(html.Div([

        new_chart, new_dropdown

    ]))

    return children

@app.callback(Output({'type': 'chart', 

                      'index': MATCH}, 'figure'),

              Input({'type': 'dropdown',

                     'index': MATCH}, 'value'))

def create_population_chart(country):

    if not country:

        raise PreventUpdate

    df = poverty[poverty['Country Name']==country]

    fig = px.line(df,

                  x='year',

                  y='Population, total',

                  title=f'Population of {country}')

    return fig

You can easily imagine how flexible and extensible our apps can become with 
such functionality, not to mention the ease of managing callbacks. Yet they are not 
straightforward and might need some time to get used to, which I believe is worth it.

We introduced many new concepts around callbacks, utilized some tricks, and introduced 
new functionality. So, let's review what was covered in the chapter.
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Summary
We first introduced the optional State argument to callback function decorators. We saw 
how by combining it with Input, we can defer the execution of functions until the user 
decides to execute them. We also ran several examples that added buttons to invoke the 
execution. We then created a simple app where the user's inputs to a certain component 
were used to dynamically populate options of another component that was "waiting." 
Those new options were in turn used to create another component.

Another interesting application of simple principles was allowing users to add new 
components having dynamic content.

We finally introduced the most powerful and flexible feature, the pattern-matching 
callbacks. We created an app where users are able to add as many charts as they want. 
Furthermore, those charts acted independently from one another, and users were 
empowered to customize their own dashboard.

That was a lot to cover, and we turn next to another feature that allows us to extend and 
expand our apps. We can only have so many components on a page until it becomes 
cluttered. In many cases, it makes sense to create separate pages/URLs for separate 
functionality, which is the topic of the next chapter.





11
URLs and  

Multi-Page Apps
So far, we have been building everything on one page. We kept adding new charts and 
interactive components to a single div and incorporated them as we saw fit. Adding 
new URLs can be useful for space-saving purposes, so that we don't end up having too 
many components on a single page. URLs also serve as a tool for classifying content and 
providing context, so users know "where" they are and what they are doing.

Even more interesting is the ability to programmatically generate many additional pages 
to your app, simply by displaying content based on the URL (or any part of it). This is 
what we will do in this chapter.

Once we get to know how the Location and Link components work, we will then make a 
slight change to the structure of the app, by making and isolating new layouts. Then, it will 
be clear how easy it is to make a multi-page app. We will have a general layout with an empty 
area in the middle, and using a simple rule, content will be displayed based on the URL.
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All the functionality we have built was mainly based on indicators. We created many 
charts for those indicators, showing how they vary in time and across countries. Our users 
might also be interested in country-oriented reports. So, we will create a page for each 
country, where users can check whichever indicator they want for the country of interest 
and optionally compare with other countries. With a few simple changes, we will add 169 
new pages to our app.

We will cover the following topics in this chapter:

• Getting to know the Location and Link components
• Extracting and using attributes of URLs
• Parsing URLs and using their components to modify parts of the app
• Restructuring your app to cater to multiple layouts
• Adding dynamically generated URLs to the app
• Incorporating the new URL interactivity into the app

Technical requirements
For the new components that we will introduce, we will still be using the same tools. Dash, 
Dash Core Components, Dash HTML Components, and Dash Bootstrap Components 
will be used to build our new functionality and add it to our app. We will also be using 
pandas for data manipulation, JupyterLab and jupyter_dash for experimenting with 
isolated functionality, and Plotly and Plotly Express for data visualization.

The main topic of this chapter will be manipulating parts of the URLs and using them 
as inputs to modify other components. This is the same as using any other element of 
our app to create the functionality that we want. Let's start by getting to know the two 
components that make this possible.

The code files of this chapter can be found on GitHub at https://github.com/
PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-
Plotly-and-Dash/tree/master/chapter_11.

Check out the following video to see the Code in Action at https://bit.ly/3eks3GI.

https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_11
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_11
https://github.com/PacktPublishing/Interactive-Dashboards-and-Data-Apps-with-Plotly-and-Dash/tree/master/chapter_11
https://bit.ly/3eks3GI
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Getting to know the Location and Link 
components
These components are part of Dash Core Components, and their names make quite clear 
what they are and what they might do. The Location component refers to the browser's 
location bar. It is also referred to as the address bar or the URL bar. We typically place a 
Location component in the app, and it doesn't produce anything visible. We mainly use 
it to discover where we are in the app, and based on that, we induce some functionality. 
Let's create a simple example to see how it can be used in its simplest form: 

1. Create a simple app:

import dash_html_components as html

import dash_core_components as dcc

from jupyter_dash import JupyterDash

from dash.dependencies import Output, Input

app = JupyterDash(__name__)

2. Create a simple layout for the app containing a Location component and, right 
underneath it, an empty div: 

app.layout = html.Div([

    dcc.Location(id='location'),

 html.Div(id='output')

])

3. Create a callback function that takes the href attribute of the Location 
component and prints it to the empty div: 

@app.callback(Output('output', 'children'), 
Input('location', 'href'))

def display_href(href):

    return f"You are at: {href}."

4. Run the app and observe its output: 

app.run_server(mode='inline')

You are at: http://127.0.0.1:8050/.
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It's quite straightforward and clear. We simply ask the Location component to tell us 
where it is, and we display it in the empty div. In this example, we asked for the href 
attribute, and we got the full URL of the current page. For various reasons, we might be 
interested in other attributes, for more nuanced functionality. Let's build another simple 
app to extract the other available attributes of the Location component and get to know 
how to use the Link component as well.

Getting to know the Link component
As the name suggests, this component produces links. Another way of creating links is by 
using the HTML <a> tag, which is available in the Dash HTML Components package. 
While <a> is more suitable for external links, Link is better suited for internal ones. 
A nice advantage is that it simply changes the pathname attribute and does so without 
refreshing the page. So, it is fast and responsive, just like changing the value in any other 
interactive component.

In the update to our simple app, we will add an <a> link, as well as a few Link 
component links, so you can experience the difference in refreshing and also get to know 
both types of link. Our Location component will now get the location of the current 
page, but we will also use it to extract all the available attributes and discuss some ideas 
about how they might be used. Let's create the elements that will go into our app's layout:

1. Add a Location component:

dcc.Location(id='location')

2. Add an <a> component through Dash HTML Components, pointing to an internal 
page using a relative path:

html.A(href='/path',

       children='Go to a directory path'),

3. Add a Link component pointing to a page with a search attribute (query parameters):

dcc.Link(href='/path/search?one=1&two=2',

         children='Go to search page')
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4. Add another Link component pointing to a page with a hash, which is also known 
as a fragment:

dcc.Link(href='path/?hello=HELLO#hash_string',   
children='Go to a page with a hash')

5. Add an empty div where the output will be displayed:

html.Div(id='output')

This is similar to the previous app, as you can see; we only added a few links. These will be 
displayed as regular links on the page. We will now extract and display the parts that we 
are interested in, using a new callback function:

1. Create the decorator of the function, adding a separate Input element for each 
attribute of the Location component. As you will see, the location is the full URL, 
but each part gets automatically extracted for us depending on what we specify:

@app.callback(Output('output', 'children'),

              Input('location', 'pathname'),

             Input('location', 'search'),

             Input('location', 'href'),

              Input('location', 'hash'))

2. Create the signature of the callback function, taking each of the Location 
component's attributes as Input elements. Note that we append an underscore 
to the hash argument, to make it clear that we are not using the built-in Python 
function of the same name:

def show_url_parts(pathname, search, href, hash_)

3. Return the different attributes of the URL we are in, in the empty div: 

return html.Div([

    f"href: {href}",

    f"path: {pathname}",

    f"search: {search}",

    f"hash: {hash_}"

])
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Running the preceding code and clicking on the links we have created shows different 
URL attributes shown in the div, as you can see in Figure 11.1:

Figure 11.1 – The Location component showing various URL parts for different URLs

As you can see, we have used the Link component to change the URL and used 
Location to extract whichever attribute we wanted. You can easily see how this might be 
used in other types of callback functions that do more than just display those attributes. 
Let's take a look at how we can parse and extract query parameters and their values using 
Python's parse_qs (parse query string) function:

from urllib.parse import parse_qs

parse_qs('1=one&2=two&20=twenty')

{'1': ['one'], '2': ['two'], '20': ['twenty']}

We can now do whatever we want with those values. A more practical application, taking 
our dataset as an example, is that you can create specific and shareable URLs, where users 
can share a specific chart with a certain set of options, simply by providing a URL for it:

parse_qs('country_code=CAN&year=2020&inidcator=SI.DST.02ND.20')

{'country_code': ['CAN'], 'year': ['2020'], 'inidcator': ['SI.
DST.02ND.20']}

Once you get a country name, a year, and an indicator, you can easily take this as an 
input to a callback function and produce the desired chart based on those selections. You 
can also imagine making it easier for your users, where the selections they make in the 
interactive components change the Location component, making it very easy to share 
those URLs. The great thing about this, as mentioned already, is that it works without 
refreshing the page, so it won't slow down the process in any way.

Let's see how this works in a practical application, using our dataset.
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Parsing URLs and using their components to 
modify parts of the app
Having established some working knowledge about how Location and Link components 
work, we want to use this in our app. The plan is to add 169 new pages using three callbacks 
and adding a few new layout elements. The user will have a drop-down menu of countries 
to choose from. Selecting a country modifies the URL, which will render the country layout. 
This layout will include a heading, a chart, and a table about the country in the URL.

Figure 11.2 shows a sample of a country page that we will build:

Figure 11.2 – A sample country page showing a chart including other countries as well

As you can see, we now have a template for a country page. This was triggered because the 
URL contained a country that is one of the available countries in the dataset. Otherwise, 
it will display the main app, containing all the components that we have built so far. Users 
can also click on the Home link to go there.

Let's first see how to restructure our app.
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Restructuring your app to cater to  
multiple layouts
At this stage, we haven't moved from the basic structure that we discussed in Chapter 1,  
Overview of the Dash Ecosystem, and as a reminder, Figure 11.3 shows a simplified 
representation of the current structure:

Figure 11.3 – The structure of a Dash app

Everything will remain the same, with the exception of the layout part. Right now, we 
only have one layout attribute, and everything was added to the main div. We used tabs 
to efficiently utilize space in some cases, and from Dash Bootstrap Components we used 
the Row and Col components to flexibly manage how components are displayed. To 
create the new layout structure, we need to create one main layout, which will serve as the 
skeleton of our app. In this layout, we will have an empty div, which will get populated 
with the appropriate content, depending on the URL we are on. Figure 11.4 shows how 
this skeleton might look. This is just to make it easy to visualize; it would never show 
an empty page like this. Note that we also added a navigation bar, to which we can add 
several other elements, and this can be thought of as another addition to our app:
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Figure 11.4 – The new skeleton layout of the app showing an empty main content area

Tip
As you can see on the skeleton page with the empty body, you can use Dash 
for very fast prototyping and designing apps. Before you start coding, you can 
quickly build the layout you want, share with other stakeholders, get feedback, 
and only then start coding the interactivity.

As we did with the same figure, you can also isolate or remove certain elements, 
to make it easier for your audience to understand the structure of the app you 
are building.

Let's now code the different parts that we need to upgrade our app with country URLs and 
a navigation bar. We start by first creating a few separate layouts:

1. Main layout: This will function as the main skeleton of our app. It will contain the 
navigation bar together with the country drop-down menu. For now, we will simply 
declare a NavbarSimple component and discuss its details in the following section. 
Our layout will also contain the footer that has tabs, which we previously created. The 
body of this layout, like our simple app at the beginning of the chapter, will have a 
Location component, as well as an empty div that will display the required layout:

main_layout = html.Div([

                  dbc.NavbarSimple([                      
…

                  ]),

                  dcc.Location(id='location'),

                  html.Div(id='main_content'),



292     URLs and Multi-Page Apps 

                  dbc.Tabs([

                  …

                  ])

])

2. Indicators dashboard: This is basically the layout part that we have been working 
with so far, as is, with no changes. We just save it to a new variable and pass it to the 
main_content div when the right condition is met (if the URL does not contain a 
country name):

indicators_dashboard = html.Div([

    # all components we built so far

])

3. Country dashboard: This will also be saved to a variable and displayed when its 
condition is met, which is when there is a country name in the URL. The content of 
this layout (chart and table) will be for the country in the URL:

country_dashboard = html.Div([

    html.H1(id='country_heading'),

    dcc.Graph(id='country_page_graph'),

    dcc.Dropdown(id='country_page_indicator_dropdown'),

    dcc.Dropdown(id='country_page_contry_dropdown'),

    html.Div(id='country_table')

])

4. Validation layout: This will be a simple list and has to be in the form of a Dash 
component, containing the previous three layouts. The importance of this list is 
to indicate to Dash which layouts are available to the app, as a whole. When we 
display the contents of one of the layouts and not the others, some components will 
not be part of the app, and some callbacks will break. The validation_layout 
attribute solves this issue for us. It's also a nice and easy way to know and manage 
the layout of our app as a whole. This can come in handy with more complex apps 
that have many more layouts. You can think of it as the app's table of contents:

app.validation_layout = html.Div([

    main_layout,

    indicators_dashboard,

    country_dashboard,

])
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We still need to specify the app's layout attribute, so Dash knows which one to use as 
the default layout. This is very simple: 

app.layout = main_layout

Let's now see how to manage the content that will be displayed in the main_layout part.

Displaying content based on the URL
Once our layouts have been set up the way we did, we need a very simple function to 
manage the content.

The function checks if the path name attribute of the Location component is one 
of the available countries or not. If it is, it returns the country_dashboard layout. 
Otherwise, it returns indicators_layout. Note that the second condition includes 
anything other than a country from the available countries. Since we don't have any other 
functionality in this app, and to catch any URL errors, it's good to send anything else to 
the home page. In more elaborate apps, though, it might be better to create error pages.

We need to take note of two simple points. First, that the pathname attribute returns 
the path which contains "/<country_name>", so we need to extract everything but 
the first character. Second, when we change the URL, if it contains special characters, 
such as spaces, they are automatically URL-encoded. This can be easily handled with the 
unquote function:

from urllib.parse import unquote

unquote('Bosnia%20and%20Herzegovina')

 'Bosnia and Herzegovina'

Choosing a country with spaces, as in this case, converts spaces to their URL-encoded 
equivalent %20, so we need to use unquote on the name to be able to handle it as  
normal text.

Here is the code that creates a countries list, containing all available countries, and the 
simple callback that manages the display of the content, based on the URL:

countries = countries = poverty[poverty['is_country']]['Country 
Name'].drop_duplicates().sort_values().tolist()

@app.callback(Output('main_content', 'children'),

              Input('location', 'pathname'))

 def display_content(pathname):
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    if unquote(pathname[1:]) in countries:

        return country_dashboard

    else:

        return indicators_dashboard

We just went through a high-level description of the new layout and structure of the app, 
and we now need to fill in some blanks and discuss some details about how to create the 
navigation bar, the drop-down menu, and its links.

Adding dynamically generated URLs to the app
We now want to complete our main layout with a navigation bar, a home page link, as well 
as a drop-down menu for the countries. To achieve that, we introduce the NavbarSimple 
component from Dash Bootstrap Components and see how we can use it. 

The NavbarSimple component will take a few elements to create the structure we want 
as follows:

1. We first create the navigation bar and give it brand and brand_href arguments, 
to indicate what the name would be and where it would link to:

import dash_bootstrap_components as dbc

dbc.NavbarSimple([

    …

], brand="Home", brand_href="/")

2. For its children argument, we will add a dbc.DropdownMenu component. We 
will also give it a label value so users know what to expect when they click on the 
menu. We will fill its children argument in the next step:

dbc.DropdownMenu(children=[

    menu_item_1,

    menu_item_2,

    …

], label="Select country")
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3. We now need to supply a list of dbc.DropdownMenuItem components to the 
drop-down menu. Those items will each get children and href arguments.  
Both of these will be for a country from the list of countries we created in the 
previous section: 

dbc.DropdownMenu([

    dbc.DropdownMenuItem(country, href=country)

    for country in countries

])

Putting together the code for the full NavbarSimple component, you can see it here:

dbc.NavbarSimple([

    dbc.DropdownMenu([

        dbc.DropdownMenuItem(country, href=country)

        for country in countries

    ], label='Select country')

], brand='Home',brand_href='/')

With this, we have implemented our navigation bar, and we can also add the Tabs 
component to the same layout, which we implemented in Chapter 1, Overview of the 
Dash Ecosystem. Now it is very easy to modify or add any navigational elements you want, 
whenever you want, which will take effect on the website as a whole.

Note that the children of the navigation bar contained links that act the same way as the 
Link component, so we also have this option when needed.

With the full layout of the whole app ready and the correct layout being loaded based on 
the URL, we are now ready to implement the last two callback functions that will generate 
the country_dashboard layout for us.

But here is the situation. I, your former colleague, wrote the code and created the 
functionality. I left the company without explaining anything, and you cannot get in touch 
with me. You need to figure out the structure for yourself, and you want to make some 
changes to my code.

This is a typical situation that you will probably face, so let's see how we can approach it.
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Incorporating the new URL interactivity into 
the app
Having created a dropdown that automatically changes the URL based on the selected 
value, we have allowed our users to go from page to page as they please. We now need to 
manage the display of the right content based on the selected country.

Since the code was already written, one thing you can do is run the app in debug mode 
and get a visual representation of all the available components and see how they are 
connected with callbacks.

Figure 11.5 shows the graph of the callbacks that have been created. Let's use it to 
understand how this functionality was implemented:

Figure 11.5 – The various components and callbacks managing the URL functionality

Let's go through the figure from left to right and see what is going on here. You can refer 
to Figure 11.2 to see how this graph corresponds to visible components in the app: 

• Everything starts with the pathname attribute of the component with the ID 
location. This can be induced by the user selecting a country from the drop-down 
menu, directly entering the full URL containing a country name, or clicking on a 
link from a web page.

• The URL (its pathname attribute) influences three components, as you can see. Most 
importantly, it determines what goes into the children attribute of the main_content 
div. If the URL happens to contain a country, then the country_dashboard 
layout will be displayed, using the display_content callback. This would display 
certain components that would make the two other callbacks relevant.
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• Assuming a country was selected, our second callback, set_dropdown_values, will 
take this country and use it to populate the dropdown that selects the country to 
plot on this page.

• The plot_country_charts callback takes three inputs and modifies three outputs, as 
you can see at the right end of Figure 11.5. The country_heading is a simple <h1> 
component that says "<country name> Poverty Data". country_page_
graph is the main graph that is displayed on the page, and country_table is a dbc.
Table component showing various details about the country, extracted from the 
country CSV file that contains data about each country in the dataset.

After this, you get the code from the repository to see how this was implemented, and you 
see two callbacks that you want to review and eventually change:

@app.callback(Output('country_page_contry_dropdown', 'value'),

              Input('location', 'pathname'))

 def set_dropdown_values(pathname):

    if unquote(pathname[1:]) in countries:

        country = unquote(pathname[1:])

        return [country]

@app.callback(Output('country_heading', 'children'),

              Output('country_page_graph', 'figure'),

              Output('country_table', 'children'),

              Input('location', 'pathname'),

              Input('country_page_contry_dropdown', 'value'),

              Input('country_page_indicator_dropdown', 
'value'))

 def plot_country_charts(pathname, countries, indicator):

    if (not countries) or (not indicator):

        raise PreventUpdate

    if unquote(pathname[1:]) in countries:

        country = unquote(pathname[1:])    df = 
poverty[poverty['is_country'] & poverty['Country Name'].
isin(countries)]

    fig = px.line(df,

                  x='year',

                  y=indicator,

                  title='<b>' + indicator + '</b><br>' + ', 
'.join(countries),
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                  color='Country Name')

    fig.layout.paper_bgcolor = '#E5ECF6'

    table = country_df[country_df['Short Name'] == 
countries[0]].T.reset_index()

    if table.shape[1] == 2:

        table.columns = [countries[0] + ' Info', '']

        table = dbc.Table.from_dataframe(table)

    else:

        table = html.Div()

    return country + ' Poverty Data', fig, table

By now, it should be easy for you to figure out how to read new code, even code that 
contains components that you have never seen before. The general structure of apps has 
been covered and modified so many times, with so many components, and I think you are 
now comfortable with figuring this out for yourself.

This is the last coding exercise in the book, and the last functionality that we will add. It 
doesn't mean that the app is complete. On the contrary, there are many things that can be 
modified and added. One thing you might consider doing is implementing a special URL 
for each indicator and having a special page for it, just like we did with countries. The 
difference is that this may not be as straightforward as the case with countries. We have 
some indicators that are percentages and others that are simple numbers. Some indicators 
should be taken together as a group, such as the ones showing different income quantiles. 
You can really get creative with what you want to change and how.

Let's now recap what we covered in this chapter.

Summary
We first got to know the two main components that are responsible for modifying, 
reading, and parsing URLs, the Location and Link components. We created two simple 
apps in which we saw how to extract the part of the URL that we are interested in and 
experimented with several options for what can be done with them.

We then saw how to modify parts of an app by taking values from parsed URLs. With 
this knowledge, we were able to restructure our app. We created a skeleton layout with an 
empty div, in which the right content would then be displayed based on the URL.
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We then incorporated the new functionality into our app. We were left with a final 
exercise that you can expect to go through in real life, which is a colleague handing you 
some code that you have to figure out and modify yourself.

Now that we have explored many options, layouts, components, and functionality, the 
next natural step is to deploy our app on a public server, so we can share it with the world.

This will be the topic of the next chapter.
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We have done a lot of work, and I'm sure you are looking forward to sharing that work 
with the world. With the app in its current state, we will go through the process of setting 
up a server and deploying the app on a public address.

Essentially, what we will be doing is moving our data and code to a different computer and 
running the app in a similar way to what we have done so far. However, we need to set up 
a hosting account, a server, and a Web Server Gateway Interface (WSGI) in order for our 
app to be publicly available and visible. We will also need to establish a basic workflow for 
a development, deployment, and update cycle.

We will take a brief look at the Git source control management system, as well as do some 
basic Linux system administration. We will cover just enough to get our app online, and 
we won't even be scratching the surface of what can be done with those systems—I only 
mention them as a reference for further research. The approach we follow is creating  
a very basic installation to get our app online as fast as possible. This will not be achieved 
using simple tools. On the contrary—we will be using some of the most powerful tools 
available, but we will use a very simple setup. This will allow us to keep things simple at 
the beginning, and then explore how to expand our apps and setup later.

The following topics will be covered in this chapter:

• Establishing the general development, deployment, and update workflow

• Creating a hosting account and virtual server

• Connecting to your server with Secure Shell (SSH)
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• Running the app on the server

• Setting up and running the app with a WSGI

• Setting up and configuring the web server

• Managing maintenance and updates

Technical requirements
We now need a Linux server connected to the internet; the data files; and our app's 
code. We will be installing Gunicorn (Green Unicorn, the WSGI) and nginx (the web 
server), as well as our app's Python packages as dependencies. We will install Dash and its 
main packages; Dash Bootstrap Components; pandas; and sklearn. An account on  
a source code management system such as Git will be needed, and we will be using 
GitHub as an example for this chapter.

Our development workflow so far has been to test certain functionality on JupyterLab 
and run it, and once it is working fine, we incorporate it to our app. This development 
workflow will not change. We will simply add a few steps and components for deployment 
after making our changes. So, let's start by establishing the workflow that we will be 
working with.

Establishing the general development, 
deployment, and update workflow
When we discuss deployment, we are assuming that we are happy enough with what we 
have developed so far. This could be when we run our app for the first time, or after having 
introduced some changes or fixed some bugs. So, our data and code are ready to go. Our 
focus will be to set up the required infrastructure to enable us to run the code online.

The setup we will be going through is going to be simple and straightforward. We will be 
using Linode as an example for our hosting provider. An important feature of Linode is 
that it follows a philosophy of "open cloud." This means that the server we will be working 
with will be a plain Linux server, using open source components and packages that 
you can customize the way you want and migrate to and from with ease. The potential 
challenge here is that with more freedom comes more complexity and responsibility. In 
Chapter 4, Data Manipulation and Preparation – Paving the Way to Plotly Express, we 
discussed the trade-off involved in choosing between higher- and lower-level software, 
and in this case, we will be working with a lower-level system to run our app.
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If you are experienced in running and managing servers, then you will have the full 
flexibility that you need and you can skip most of the chapter. The good news for 
beginners is that even though you will be "on your own," we will be running a very simple 
setup with simple defaults. This should enable you to easily deploy your app, and you can 
gradually learn more about how you might want to customize your setup, knowing that 
you have full access to some of the top tools.

Our deployment workflow will contain three main components, outlined as follows:

• Your local workstation: This has been extensively covered so far, and you should 
have experience with the local setup that we have been working with so far.

• A source code management system: You don't really need this to get your app to 
run but it is a very good practice to follow, especially when your app grows in size 
and when more people are involved in its maintenance.

• A server with the required infrastructure and setup: Your code and data will be 
running and served to the public from here.

To make things clearer, the following screenshot shows the elements we are discussing 
and, following that, a brief description of them and how they relate to each stage in the 
development and deployment cycle:

Figure 12.1 – The three main components in the development, deployment, and update cycle
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One or more people write code on their local machines, and the code they write travels 
both ways between them and the central Git repository. Note that code does not travel 
between collaborators on the project—for example, by email; they only send their code 
changes/additions to the Git repository. There are many benefits to using a central Git 
repository. This is a large topic and there are special books for it, so we will only cover very 
basic concepts, and I encourage you to learn more. One of the most important things that 
Git facilitates is to have everyone collaborate on a single set of changes—this streamlines 
the process for everyone. There needs to be one or more administrators of the central 
repository, and that person(s) approves what goes into the main repository and what 
doesn't. Additionally, they need to be able to resolve conflicts. Two people might work on 
the same file separately, and they might both push changes that conflict with each other, 
so someone needs to decide what to do in such cases.

The approved version gets pushed from Git to the server and the website gets published. 
As you can see, code goes in one direction only at this stage. Even if you are working 
alone, it's highly advised to use Git to manage changes.

Another important benefit is that every set of changes (which are called "commits") that 
are made contains metadata about when the changes were made, and by who. More 
importantly, the commits show to which branch of changes they belong. In case you need 
to roll back some changes, you can also "check out" a certain commit or a branch, and take 
the full repository back to a certain state. You can fix your bugs and make changes while 
your app is running, and then re-introduce them.

This was an oversimplification of what Git does and how it works, but I think it's worth 
mentioning and learning more about. We will use it for deployment and introduce very 
basic commands. We will go through the process of making a change to one of our files 
in the final section of this chapter, to give an example of how a change can be introduced 
using Git.

At this stage, you have your code working locally with all the required data, and you want 
to push it to a central Git repository and then to your server for deployment. Alternatively, 
you might simply clone this book's repository and deploy it to your server as well. 

Now that we have established the general cycle of our work and explored the main 
components and steps, we are ready to start our work online, and we first do so by setting 
up a Linode account.
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Creating a hosting account and virtual server
It's straightforward to set up an account on Linode, and you can do so from the signup 
page at https://login.linode.com/signup. Once you register and provide your 
billing information, you can start by creating a "Linode." Virtual servers with their own 
Internet Protocol (IP) address are also called Linodes (Linux + node), similar to the 
name of the company.

The process is straightforward and can be done through the main dashboard that you land 
on when you log in.

The following screenshot shows some of the main options available to create and manage 
your account:

Figure 12.2 – The main objects that you can create on Linode; most importantly, the "Linode"

https://login.linode.com/signup
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Once you select the Create option and then select Linode, you are given several options 
to choose from. We will go with Distributions. You can think of distributions as bundles 
of software based on the Linux kernel but containing different components. Each 
distribution is customized for a certain use case. We will be using the Ubuntu distribution 
for our Linode. Other options can be interesting—for example, Marketplace provides 
the option to create a full installation of popular software with a few clicks. Feel free to 
explore these other options as well. Figure 12.3 shows the distribution we selected, and 
after that you have a few simple options to choose from. Most importantly, you need to 
choose a plan, and there are many to choose from, giving you a lot of flexibility. You can 
use the smallest one for now, and then you can decide when/if you want to upgrade. In the 
following screenshot, you can see the Ubuntu distribution being selected:

Figure 12.3 – Selecting and configuring a distribution on Linode

Once you have finalized the remaining options you can hit the Create button, and 
you should now land on the dashboard for your newly created Linode. The following 
screenshot shows the top of the screen for that interface: 

Figure 12.4 – The Linodes dashboard containing several reports and details
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You can see all the relevant details about your newly created Linode on this screen, and 
you can refer back to it to get performance data and other information, or in case you 
want to make any changes. Later on, you will probably want to either upgrade your plan 
or add volumes for extra storage, and so on.

For us, the interesting part of this screen is the SSH Access part. We will now use this to 
log in to our server, and we won't be using the web interface from now on.

Important note
Linode provides several ways to interact with and manage your account. It 
provides an application programming interface (API) and a command-
line interface (CLI), among other tools, from which you can do pretty much 
anything that you can do through the web interface. It's more convenient to use 
the web interface for simple tasks such as the one we just did. Using the API 
and/or the CLI becomes more useful for automating and operationalizing tasks 
on a large scale.

Now that we have our server running, we want to start working on it. This will mainly be 
done through the SSH interface.

Connecting to your server with SSH
SSH is a protocol for moving data securely, over an unsecured network. This will enable us 
to get access to and run code from the command line of our server, using the Terminal on 
our local machine.

Let's start by copying the ssh root@127.105.72.121 command by clicking on the 
clipboard icon next to it, which you can see in Figure 12.4 as well.

Now, open the terminal application on your local machine and paste the command,  
as follows:

ssh root@172.105.72.121

The authenticity of host '172.105.72.121 (172.105.72.121)' 
can't be established.

ECDSA key fingerprint is SHA256:7TvPpP9fko2gTGG1lW/4ZJC+jj6fB/
nzVzlW5pjepyU.

Are you sure you want to continue connecting (yes/no/
[fingerprint])? yes

Warning: Permanently added '172.105.72.121' (ECDSA) to the list 
of known hosts.

root@172.105.72.121's password:
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As you can see, we had two main responses: one asking if we want to connect and add 
the IP to the list of known hosts, to which we answered yes; and another response, after 
having confirmed, asking us for our password.

Once you enter your password, which you have created for this specific server (Linode) 
and not for your account, you get the new prompt, as follows: 

root@localhost:~#

You now have root access to your server from your own terminal application. A good 
thing to do immediately (and frequently) is to update your system's packages. Two quick 
commands to do that are shown here:

apt-get update

apt-get upgrade

Later on, you will probably need to manage updates to other packages that you install 
separately. 

Having root access is very powerful and you can do anything as the root user, which 
means that this could also be a security risk. If someone else were able to accidentally sign 
in using your root user, they could potentially add or delete any files they want, with no 
restrictions whatsoever. 

Because of that, we will use the recommended practice of creating a limited user 
immediately, and only signing in using that user. Proceed as follows:

1. Create a new user using whatever name you want, as follows:

adduser elias

2. You will be prompted to enter and re-enter a password for this user. By now, you 
will have three passwords: one for the Linode account, another for the root user 
of this Linode, and one for the limited user we just created. Optionally, you can 
also provide the full name, phone number, and other details. You can hit Enter and 
skip those options if you want. Even though this user is limited, we can add it to 
the sudo (superuser do!) group. This will allow this user to access root privileges 
temporarily, whenever we want to make some admin tasks or access sensitive files. 
Now that we have a new limited user, let's add it to the sudo group, as follows:

adduser elias sudo
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3. Having created a limited user that can temporarily use sudo privileges, we can now 
sign out of root, and log back in again with the new user, as follows:

exit

4. You should get a message that the connection to your IP address was lost, and you 
should see the prompt in the Terminal of your local machine. Now, we log in using 
the new user, the same way we did previously, as follows:

ssh elias@172.105.72.121

5. Once you log in successfully, you will be given a new prompt showing the logged-in 
user, as seen here:

elias@localhost:~$

We are now ready to get started with building our app on the server, but before that, let's 
see how we can access sensitive files and use sudo privileges, as follows:

1. Try to access one of the system's log files—for example, using the cat command, as 
illustrated in the following code snippet:

elias@localhost:~$ cat /var/log/syslog

cat: /var/log/syslog: Permission denied

2. We were not given permission, which is the right outcome. Now, we can ask for 
sudo access by running the same command and preceding it with the sudo 
command, as follows:

elias@localhost:~$ sudo cat /var/log/syslog

[sudo] password for elias:

3. Enter the password for this user and get access to the requested sensitive files.

You will face this situation quite frequently, and you can easily use the sudo command to 
get temporary root access.

We have a good part of our server ready to go, but we are still not there yet. We now want 
to get our files and data on the server, and then install the required Python packages.
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Running the app on the server
What we will do in this section is exactly what we did back in Chapter 1, Overview of the 
Dash Ecosystem. We will clone the code and data repository from GitHub and get them to 
the server, install the dependencies, and try to run the app.

You typically have Python already installed on such servers, but it's always good to check 
and know how to get it, in case you don't. An easy way to check if we have it installed, 
and to get the version in one go, is to run python --version from the command 
line. Keep in mind that the python command can be interpreted to mean Python 2. The 
upgrade to Python 3 took a while to get fully implemented, and so, during that time, to 
differentiate between the two versions the python3 command was used, to be explicit 
about wanting to run Python version 3. This applies to the pip command, which can also 
be run as pip3.

When I ran python3 --version, I got version 3.8.6. By the time you read this, 
the default version might be different. Also, at the time of this writing, Python 3.9 was 
launched and was considered stable. This is what I got when I tried to run it from the 
command line:

elias@localhost:~$ python3.9

Command 'python3.9' not found, but can be installed with:

sudo apt install python3.9

No explanation needed. We were also reminded that in order to install such a package, 
we need to use sudo as well. These are some examples of what you can use and what you 
might typically face, but Linux administration is another massive topic, and it's good to 
familiarize yourself with some of its basics. 

Let's now activate a virtual environment and clone the GitHub repository, using the exact 
same steps we used in Chapter 1, Overview of the Dash Ecosystem, as follows:

1. Create a Python virtual environment in a folder called dash_project (or any 
other name you want). This will also create a new folder with the name you chose. 
Note that you might need to install venv for this to work, and you should get the 
command to do so, as in the previous example, as follows:

python3 -m venv dash_project
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2. Activate the virtual environment. You should now see the name of the environment 
in parentheses, indicating that the environment is activated, as illustrated in the 
following code snippet:

source dash_project/bin/activate

 (dash_project) elias@localhost:~/dash_project$

3. Go into the environment folder by running the following command:

cd dash_project

4. We now want to clone our GitHub repository, and get all available files and code on 
our server. We will use the book's repository as an example, but I encourage you to 
run and clone your own instead. Run the following command:

git clone https://github.com/PacktPublishing/Interactive-
Dashboards-and-Data-Apps-with-Plotly-and-Dash

5. Next, we need to install the required packages, which we do by getting into the main 
folder and running the command for that, as follows: 

cd Interactive-Dashboards-and-Data-Apps-with-Plotly-and-
Dash/

pip install -r requirements.txt

6. We can now enter into any chapter's folder to run that particular version of the 
app. In the following code snippet, we can see what happens if we go into the final 
version of Chapter 11, URLs and Multi-Page Apps:

cd chapter_11

python app_v11_1.py

Going through the preceding sequence of steps produces the exact same result that we are 
familiar with when running our apps locally, as you can see in the following screenshot: 

Figure 12.5 – The app running on the server
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Getting the preceding message means that the code is working fine, with no issues. Of 
course, it also gives us a big warning that we are using a development server only and that 
we should not use it in a production deployment.

So, we will set up our web server. But before that, we need to use the interface that makes 
it easy for our web framework (Flask) to work with any web server we want. This interface 
is called a WSGI (pronounced Wiz-ghee, or whiskey!). 

Let's first establish a basic understanding of the components and phases involved in 
serving our app that we will be working with. The following screenshot shows a simple 
sequence that requests and responses flow through when a user accesses our app from 
their browser:

Figure 12.6 – The components of our app, on a public server

The request starts form the left (as you can see in the preceding screenshot), and then 
goes through several components until it reaches Dash, which runs our app.py module. 
Then, our app's code generates a response that goes through the same components in the 
opposite direction, until it reaches the user's browser.

Let's briefly discuss each of those elements, as follows:

• Browser: This is straightforward and can mean any HyperText Transfer Protocol 
(HTTP) client. When the user enters a Uniform Resource Locator (URL) and hits 
Enter, the browser makes a request to the web server.

• Web server: The job of the web server is to handle the requests that it receives. Our 
problem is that the server doesn't execute Python code, so there needs to be some 
way for us to get the requests, interpret them, and return responses.
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• WSGI server: This is the middleware that does the job of speaking the server's 
language, as well as speaking Python. Having this set up means that our web 
framework (Flask, in this case) does not need to worry about handling the server 
or handling many requests. It can focus on creating the web app, and only needs to 
make sure that it conforms to the WSGI specification. This also means that with this 
set up, we are free to change our web server and/or WSGI server without having to 
make any changes to our app's code.

• Web framework: This is the Flask web framework with which Dash is built. A Dash 
app is basically a Flask app, and we have covered this quite extensively.

We don't need to know about web servers or WSGI servers any more than this for now. 
Let's see how simple it is to run our app using our WSGI server.

Setting up and running the app with a WSGI
We have run our app using the python app.py command from the command  
line. Alternatively, we used the app.run_server method when running with 
jupyter_dash. We are going to do it now with Gunicorn, our WSGI server.

The command is slightly different from the previous one and is run with the  
following pattern:

gunicorn <app_module_name:server_name>

We have two main differences here. First, we only use the module name, or the filename 
without the .py extension. Then, we add a colon, and then the server name. This is  
a simple variable that we have to define, and it can be done with one line of code, right 
after we define our top-level app variable, as follows:

app = dash.Dash(__name__)

server = app.server

Now that we have defined our sever as server, and assuming our app is in a file called 
app.py, we can run the app from the command line, as follows:

gunicorn app:server

That's it for the WSGI server!



314     Deploying Your App

Once that change has been made, we can go to the folder where our app is and run it with 
the preceding command. The following screenshot shows the output we get when running 
our app with the gunicorn command:

Figure 12.7 – Running the app with the Gunicorn WSGI server

This output shows that our app is working fine. We can also see that it is listening at a 
different port. The default port for Dash is 8050, while here it is 8000.

We have come one step closer to the browser and the user. It seems the code is working fine 
with the WSGI server. Let's now set up our web server to make our app publicly available.

Setting up and configuring the web server
We will be using nginx as our web server in this example. You can now stop the app using 
Ctrl + C from the command line. Alternatively, you can stop your app using the kill 
command, which requires you to know the ID of the process that is running your app. 
This is useful if you log in later and have no idea which processes are running, and want to 
identify the process responsible for your app.

You can run the ps -A process status command from the command line to get all the 
currently running processes. You can either scroll to find a process whose name contains 
gunicorn or add a pipe, and search for that process in the previous command's output, 
as follows:

ps -A | grep gunicorn

Running the preceding command while the app is running gets us the output you see in 
the following screenshot:

Figure 12.8 – How to find the process IDs for processes containing a certain text pattern

The process IDs are the same as the ones that we got when we ran with Gunicorn, which 
you can also see in the preceding screenshot. 
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To stop the app, you can use the kill command, as follows:

kill -9 54222

Now that we have checked that our app runs with our WSGI server, it is time to set up our 
web server.

As mentioned before, even though we will use the simplest possible configuration to make 
things easy for us, we will still be using one of the most powerful web servers available.

Let's start by installing it. From the command line, while logged in to your server, run the 
following command:

sudo apt install nginx

We now want to create a configuration file for our app. Installing nginx does several 
things, one of which is creating a sites-enabled folder. We want to create our 
configuration file there, with basic options. We can use any text editor for that; a simple 
one to use that you can usually find on Linux machines is the nano editor. Running it  
as a command followed by a filename opens that file for editing (or creates one if it  
doesn't exist).

From the command line, run the following command to open and edit our file:

sudo nano /etc/nginx/sites-enabled/dash_app

You should get an empty file, and you can copy and paste the following code, but make 
sure to replace the IP address after server_name with your own IP address:

server {

    listen 80;

    server_name 172.105.72.121;

    location / {

        proxy_pass http://127.0.0.1:8000;

        proxy_set_header Host $host;

        proxy_set_header X-Forwarded-For $proxy_add_x_
forwarded_for;

    }

  }
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This code contains configuration for the server context, as you can see. It tells it  
to listen on port 80, which is the default port for web servers. It also defines the  
server_name as the IP address. Later on, you can use this to define your own  
domain name.

It then defines the behavior of the server for location / under another block. The most 
important thing for us is that we are making nginx a proxy server with the proxy_pass 
directive and telling it to listen to the URL and port that Gunicorn is listening to. So, now, 
the cycle should be complete. Our web server will be sending and receiving requests and 
responses through the correct URL and port, where the interface with our Python code is 
handled by Gunicorn.

Installing nginx creates a default configuration file, which we need to unlink with the 
following command:

sudo unlink /etc/nginx/sites-enabled/default

We just need to reload nginx after making this change. Keep this in mind when you make 
any changes in the future. You should reload nginx for any changes to take place, which 
you can do with the following command:

sudo nginx -s reload

Now, we can run our app with gunicorn app:server, and then, using our  
browser, we can navigate to our IP address and see the app online, as can be seen in  
the following screenshot:
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Figure 12.9 – The app deployed on a public address

Congratulations! Your app is now available to anyone with an internet connection; it is on 
a public server, and you can share your work with the world. 

What happens after that? How do you make changes, and what if there were upgrades to 
the packages that you used?

We tackle some simple guidelines that might be helpful to follow for the maintenance 
phase, after we have deployed our app.

Managing maintenance and updates
Several things will probably need to be managed and handled after publishing your app, 
and we cover a few of them.
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Fixing bugs and making changes
This should follow the same workflow we established at the beginning of this chapter. Any 
changes to our code, whether bug fixes or additions to our functionality, should be done 
the same way. We edit code locally, make sure it is running correctly, and then push to the 
central Git repository. Then, from the server, we pull the changes and rerun the app.

Updating Python packages
There are several packages that our app depends on, and you will most likely have even 
more in your daily work. Those packages will release updates every now and then, and you 
need to make sure that they are up to date. Some of those updates are security updates and 
need to be handled as soon as possible, while others introduce new options to packages. In 
general, you can run pip install --upgrade <package_name> to achieve this, 
but you will still need to check if the new functionality might change the way your app is 
running or whether it will break your existing code. Well-maintained packages usually 
publish any such breaking changes and also provide instructions for upgrading, if needed.

Once you have decided to upgrade packages, you can run the upgrade locally to first test 
your app and make sure it is running with the new version, as follows: 

1. From the command line, go into the app's folder on your local machine, as follows:

cd /path/to/your/app

2. Activate the virtual environment, like this:

source /bin/activate

3. You should now see the name of your environment in parentheses (env_name) 
and you are now ready to upgrade the package of your choice, as follows:

pip install --upgrade  <package_name>

4. Assuming everything went fine, run your app, and make sure it is running as 
expected by executing the following command:

python app.py
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5. If everything went well, you now need to update your requirements.txt file 
to reflect the new version of the package, and possibly modified versions of other 
dependencies. We first use the pip freeze command. This takes all the available 
packages in the current environment, as well as their dependencies, together with 
the right version number and prints them out to stdout. Now, we want to take 
this output and redirect it to the requirements.txt file to overwrite it with 
the updated requirements. We can do those two steps in one go, but it's good to 
familiarize yourself with the output of the first command first, which can be seen 
here:

pip freeze > requirements.txt

6. Commit the changes to the Git repository and push to GitHub. The git add 
command adds the file(s) to the staging area, which means they are now ready to 
be added to the history of the repository. The next step is to commit those additions 
with the git commit command, which also takes a message in which you state 
what has been done. We then submit the changes to the online repository with the 
push command, as follows:

git add requirements.txt

git commit -m 'Update requirements file'

git push

7. Now that you have the latest requirements.txt file on your central Git 
repository you can pull it to your server, just as we did in this chapter. After logging 
in to your server, moving into your project's folder, and activating its virtual 
environment, you can pull the changes. The git pull command does two things. 
First, it fetches the latest changes of the repository from the remote server. Then, it 
merges the changes into the local copy, and you get the updated app. The command 
is shown here:

git pull

8. The change we fetched and merged in this case was the updated requirements.
txt file. We now run the following command to install our packages on the server 
using the new versions:

pip install -r requirements.txt

gunicorn app:server
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This should start your app again, with the latest updates included. While we changed the 
requirements file in this case, we could have also changed the app's file, or maybe added 
new data. Whatever the change, this is the general cycle that we go through to incorporate 
those changes.

Now that you have a new component to handle—your server—you will also be managing 
and maintaining it as well.

Maintaining your server
The following list provides a very brief and oversimplified set of things that you might be 
interested in, without instructions. The proper way is to learn more about Linux system 
administration, but these are likely things you will want to manage and can easily find 
guides and documentation for:

• Adding a custom domain: You probably want a nice name for your app, and not 
an IP address. This is straightforward, and you need to buy a domain name from 
a registrar and make the necessary changes to enable that. You can find many 
examples and guides on Linode's documentation on how to achieve that.

• Setting up a security certificate: This is important and has become straightforward 
and free to do. Many guides and examples are available for that as well.

• Updating packages: As we did the first time we logged in, it's good to constantly 
update your server's packages and especially make sure you have the latest  
security updates.

• More security: The only security measure we took was adding a limited user, which 
was added to the sudo group. There are other things that can be done as well, such 
as hardening your SSH access with authentication key pairs and configuring  
a firewall, among other actions.

We made a big leap in this chapter, and we quickly explored very powerful tools and 
techniques, so let's recap on what we covered in this chapter.

Summary
We started by establishing a simple workflow to manage the cycle of development, 
deployment, and updates. We defined three main components for this workflow and how 
they relate to one another. We discussed the relationship between local workstations,  
a central Git repository, and a web server, and set some guidelines on how work should 
flow between them.
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We then created a hosting account, set up a virtual server, and got ready to do work on the 
server locally. Then, we explored how we can access the server locally through SSH, and 
ran some basic security and administration tasks. We cloned our repository and saw that 
it can run on the server exactly as we do locally.

We then discussed the two other required components for our app to be available publicly. 
We ran our app slightly differently by using a WSGI server. The last step was to install and 
configure a web server, using the simplest setup possible. Our app was then accessible on  
a public IP.

Finally, we explored which ongoing maintenance tasks might be interesting. Most 
importantly, we ran through the process of upgrading our Python packages, changing  
a file, committing it to Git, pushing it to the online repository, and merging the changes to 
our server. This is definitely something that you will be doing continuously.

Our final chapter of the book will be about other directions that you might be interested 
in exploring and other areas that we haven't covered. You now know your way around 
Dash and can very easily navigate and find out whatever you need to know, yet there are 
many other things to explore. We will take a quick tour of those options in the last chapter.
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Welcome to the end of the book, and the beginning of your Dash journey! Even though 
we covered many topics, use cases, chart types, and interactivity features, the sky is the 
limit in terms of what you can build with Dash.

By now, you should be as comfortable building dashboards as you would be in creating 
presentations. You should be comfortable manipulating and expressing data using  
a variety of data visualization techniques and chart types.

But this book just sets you on the path, and there are many things to explore next, so we 
will cover some ideas and pointers on how to explore the topics we covered in more depth. 
We will also look at some aspects that weren't covered in the book that you might be 
interested in exploring.

The following areas will be covered in this chapter:

• Expanding your data manipulation and preparation skills

• Exploring more data visualization techniques

• Exploring other Dash components

• Creating your own Dash components

• Operationalizing and visualizing machine learning models

• Enhancing performance and using big data tools

• Going large scale with Dash Enterprise
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Technical requirements
We will not be doing any coding or deployment, so there won't be any technical 
requirements for this chapter. 

You can learn new things and explore them generally from two directions: the top-down 
approach, where you want to do something, or are required to do something, and 
the bottom-up approach, where you start with the tools, and you want to explore the 
possibilities and what you can do with them:

• Top-down: Because of a certain requirement or constraint, often you will be 
required to do something – make something faster, better, or easier, for example. 
In order to solve these problems, or satisfy some requirement, you are required to 
learn something new. The value of this approach is mainly its practicality. You know 
what is useful and what is required, and this helps focus your mind and energy on 
the solution that you want, which is focused on solving a practical problem. At the 
same time, if you only focus on practical problems, you might be missing out on 
new techniques and approaches that you might learn that can make your practical 
life much easier.

• Bottom-up: This is the approach from the other direction. You start by learning 
something new just for the sake of exploration or curiosity. It could be something 
big, such as machine learning, or as small as learning about a new parameter in  
a function that you use every day. This suddenly opens up possibilities in your 
mind. It also expands your concept of what is possible. This is something that you 
can do proactively, regardless of the work requirements that you have. The famous 
quote, "The more I practice, the luckier I get," seems to fit this situation. The benefit 
of this approach is that you learn things properly and establish a solid theoretical 
understanding that allows you to be more in control of the techniques at hand. The 
drawback is that you might get too theoretical and lose touch with reality and forget 
what is really useful and what's not.

I find myself alternating between phases where sometimes I spend most of my time 
focused on solving a particular problem (top-down) and get very practical and produce 
practical solutions. I then go through a period of stagnation where my imagination 
doesn't work as much and I'm not that creative. I then slip into a more theoretical mode. 
Learning new things is very interesting and engaging in this phase. After learning enough 
new things and having established a good understanding of a certain topic, I find myself 
getting new ideas and get back to the practical mode, and so on.

You can see what works for you. Let's now explore some specific topics that you might be 
interested in on your Dash journey.
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Expanding your data manipulation and 
preparation skills
If you have read any introductory text on data science, you will have probably been told 
that data scientists spend the majority of their time cleaning data, reformatting it, and 
reshaping it.

As you have read this book, you will have probably seen this in action!

We saw several times how much code and mental effort, and importantly, domain 
knowledge, goes into just getting our data into a certain format. Once we have our data  
in a standardized format, for example, a long form (tidy) DataFrame, then our lives 
become easier.

You might want to learn more pandas and NumPy for a more complete set of techniques 
on reshaping your data however you want. As mentioned at the beginning of the chapter, 
learning new pandas techniques without a practical purpose in mind can help a lot in 
expanding your imagination. Learning regular expressions can help a lot in text analysis, 
because text is typically unstructured, and finding and extracting certain patterns can help 
a lot in your data cleaning process. Statistical and numeric techniques can definitely make 
a big difference. At the end of the day, we are basically crunching numbers here.

Improving data manipulation skills naturally leads us to easier and better visualization.

Exploring more data visualization techniques
We saw how easy it is to work with Plotly Express and how powerful it can be. We also 
saw the extensive options available for us. At the same time, we are constrained by the 
requirement to have our data in a certain format, which Plotly Express cannot help with. 
This is where we have to step in as data scientists.

We covered four main chart types, and this is a very small subset of what's available. As 
mentioned at the beginning of the chapter, visualization works in a couple of ways. You 
might be required to produce a certain chart, so you end up having to learn about it. Or, 
you might learn about a new chart, and it then inspires you to better summarize certain 
types of data for certain use cases.

You might learn about new types of charts based on the geometric shapes/attributes they 
use, such as pie charts or dot plots. You can also explore them based on their usage; for 
example, there are statistical and financial charts. Many chart types boil down to basic 
shapes, such as dots, circles, rectangles, lines, and so on. The way they are displayed and 
combined makes them distinctive.
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Another interesting visualization technique is using sub-plots. While we extensively used 
faceting in the book, facets are basically the same visualization for multiple subsets of the 
data we are analyzing. Sub-plots, on the other hand, allow you to create arrays of plots that 
could be independent of one another. This can help you produce rich reports in a single 
chart, where each sub-plot conveys a different aspect of your data.

Having explored and mastered new visualization techniques and charts, you will probably 
want to put them in an app and make them interactive.

Exploring other Dash components
We covered the basic Dash components and there are many others available. Keep in mind 
that there are three possible approaches here: 

• Go deeper into components you know: Although we covered many components, 
there is always more to explore – more options to learn, use, and gain experience in. 
You probably want to go deeper into dash_table, which can offer quite complex 
functionality and spreadsheet-style options.

• Explore other Dash components: There are several other components that we 
didn't cover that could enhance your apps. Two of those are DatePickerSingle 
and DatePickerRange, which are self-explanatory. The Interval component 
allows you to execute code whenever a certain period of time elapses. The Store 
component allows you to store data in the user's browser, in case you want to 
save some data to enhance the usability/functionality of your apps. There is also 
an Upload component for uploading files. These are all available under Dash 
Core Components. There are several other packages that are interesting for other 
use cases. For example, Dash Cytoscape is great for interactive graph (network) 
visualizations. We saw it several times when we used the visual debugger and saw 
how much it simplifies our understanding of our app. This has many applications 
for various industries. To enable users to draw on your charts, you can check out the 
image annotation options that Dash provides, as well as the Dash Canvas package. 
Together, they provide a wide array of options to let users literally draw on the 
charts with their mouse, using set shapes such as rectangles, or by simply dragging 
the mouse.

• Explore some of the community components: Since Dash is an open source 
project and has a mechanism for creating and incorporating new components, 
many people have created their own Dash components independently. One of those 
is Dash Bootstrap Components, which we have relied on in our work. There are 
many more and many new ones coming out all the time.
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This takes us to another topic, which is creating your own Dash component. 

Creating your own Dash component
It's interesting to know that the official strategy for Dash is to be "React for Python, R, 
and Julia." As you might know, React is a very big JavaScript framework for building user 
interfaces. There is a massive library of open source React components, and Dash Core 
Components are basically React components made available in Python. This means that 
if there is any functionality that is not provided by Dash that you would like to have, 
you might consider developing it yourself, hiring a developer to build it, or you can also 
sponsor its development and have the Plotly team build it. Some of the components that 
we worked with were sponsored by clients who wanted to have certain functionality that 
wasn't available. This is one way to support Dash as well. It also benefits everyone who 
uses open source Dash.

There are clear instructions on how to create your own Dash components, and as a 
Dash developer, it's good to explore this option. It will certainly give you a deeper 
understanding of how the library works, and maybe you will end up creating a popular 
component yourself!

With all the data manipulation, visualization, and components, you have a rich vocabulary 
to do things beyond plotting points on a chart. Exploring what can be done with machine 
learning can give your models a big boost and can make them usable by others.

Operationalizing and visualizing machine 
learning models
Machine learning and deep learning are completely separate topics, of course, but with 
all the previously mentioned skills, you can take your machine learning to a new level. At 
the end of the day, you will use charts to express certain ideas about your data, and with 
a good interactive data visualization vocabulary, you can give your users many options to 
test different models and tune hyperparameters.
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Enhancing performance and using big  
data tools
This is a very important topic, and we always need to make sure that our apps perform at 
an acceptable level. We didn't tackle this in the book because the focus was mainly to learn 
how to create a Dash app with all the other details that make it work. We also worked with 
a very small dataset of a few megabytes. Still, even with a small dataset, it can be crucial 
to optimize it. Big data can be about handling a massive file, or it can be about a small file 
that needs to be handled a massive number of times.

These are some things that can be done to optimize performance, but big data is a separate 
topic altogether, so here are some hints and some areas to explore.

Once we know how our app will behave and what features we will be using, we can clean 
up some unnecessary code and data that might be hindering our app's performance. Here 
are some ideas that can be done immediately to our app:

• Load the necessary data only: We loaded the whole file, and for each callback, we 
queried the DataFrame separately. That can be wasteful. If we have a callback for 
population data only, for example, we can create a separate file (and then a separate 
subset) DataFrame that only contains relevant columns and query them only, 
instead of using the whole DataFrame.

• Optimize data types: Sometimes you need to load data that contains the same 
values repeated many times. For example, the poverty dataset contains many 
repetitions of country names. We can use the pandas categorical data type to 
optimize those values:

1. Load the sys module and see the difference in size in bytes for a string (a country 
name) and an integer: 

import sys

sys.getsizeof('Central African Republic')

 73

2. Get the size of an integer value:

sys.getsizeof(150)

 28
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3. We can see the big difference in size with the string taking almost three times the 
memory that an integer does. This is what the categorical data type basically does.  
It creates a dictionary mapping each unique value to an integer. It then uses integers 
to encode and represent those values, and you can imagine how much space this 
can save.

4. Load the poverty dataset:

import pandas as pd

poverty = pd.DataFrame('data/poverty.csv')

5. Get a subset containing the country names column and check its memory usage: 

poverty[['Country Name']].info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 8287 entries, 0 to 8286

Data columns (total 1 columns):

  #   Column        Non-Null Count  Dtype 

---  ------        --------------  ----- 

 0   Country Name  8287 non-null   object

dtypes: object(1)

 memory usage: 64.9+ KB

6. Convert the column to the categorical data type and check the memory usage:

poverty['Country Name'].astype('category').to_frame().
info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 8287 entries, 0 to 8286

Data columns (total 1 columns):

 #   Column        Non-Null Count  Dtype   

---  ------        --------------  -----   

 0   Country Name  8287 non-null   category

dtypes: category(1)

memory usage: 21.8 KB

7. With a simple command that encoded our countries as integers, we reduced the 
memory usage from 64.9 KB to 21.8 KB, making it about a third of the original size.
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8. Another thing you might want to consider is to learn more about the available big 
data technologies and techniques. One of the most important projects right now is 
the Apache Arrow project. It is a collaboration between leaders from the database 
community, as well as from the data science community. One of the most important 
objectives of the project is to unify the effort across disciplines, and crucially, across 
programming languages.

9. When you want to read a CSV file, for example, you want it represented in memory 
as a DataFrame. Whether you are using R or Python, or any other language, you 
will be running very similar operations, such as sorting, selecting, filtering, and 
so on. There is a lot of effort duplicated, where each language implements its own 
DataFrame spec. From a performance perspective, it has been observed that a large 
percentage of computing power is wasted on converting objects from one language 
to another and reading and writing. This can also happen while saving an object to 
disk and then opening it in another language. This can cause a waste of resources, 
and in many cases forces many teams to have to choose a single language for easier 
communication and to reduce the wasted time and effort.

10. One of the goals of the Apache Arrow project is to create a single in-memory 
representation for data objects such as the DataFrame. This way, objects can 
be passed around across programming languages without having to make any 
conversions. You can imagine how much easier things can become. Also, there 
are big wins due to the collaborations across the programming languages and 
disciplines where a single specification is being used and maintained.

11. Each programming language can then implement its own libraries that are based 
on a single spec. For Python, the package is pyarrow, which is very interesting to 
explore. In many instances, it can be used on its own, and in others, it can integrate 
with pandas.

12. A very interesting file format that is also part of the project is the parquet format. 
Just like CSV and JSON, parquet is language-agnostic. It is a file and can be 
opened with any language that has a parquet reader. And the good news is that 
pandas already supports it.

13. One of the important features of parquet is massive compression that can reduce 
the size of your files drastically. So, it is ideal for long-term storage and efficiently 
utilizing space. Not only that, but it is very efficient to open and read those files 
because of the format. The file contains metadata about the file, as well as the 
schema. Files are also arranged into separate structures for efficient reading. 
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14. Some techniques that parquet uses are as follows: 

• Column orientation: In contrast to CSV, for example, which is a row-oriented 
format, parquet mainly stores data in columns. Row-oriented formats are suitable 
for transactional processing. For example, when a user logs in to a website, we need 
to retrieve data about the user (a row), and potentially we want to write and update 
that row based on that user's interactions. But in analytical processing, which is 
what we are interested in, if we want to analyze the average income per country, 
for example, we only need to read two columns from our dataset. If the data was 
arranged in columns, then we can jump from the beginning to the end of the 
column and extract it much faster than if it was a row. We can read other columns, 
but only if we want to do further analysis on them.

• Encoding: Just like the example we saw with pandas categorical type, parquet 
also performs dictionary encoding. There are several other encoding schemes that 
it uses. For example, there is delta encoding, which works best when you have 
large numbers. It saves the value of the first number in the column and only saves 
the difference between it and consecutive numbers. For example, if you had the 
following list: [1,000,000, 1,000,001, 1,000,002, 1,000,003], these numbers could 
be represented as [1,000,000, 1, 1, 1]. We saved the full value of the first element 
and only the difference between each element and the previous one. This can mean 
a lot of memory is saved. This can be really useful when using timestamps, for 
example, which can be represented as large integers with small differences between 
them, especially in time series data. When you want to read the list, the program 
can do the calculations and give you the original numbers. Several other encoding 
strategies are used, but this was just another example.

• Partitioning: Another interesting technique is that parquet can split a file into 
multiple files and read and merge them from a folder that contains those files. 
Imagine a file with data about people, and this file has 10 million rows. One of the 
columns could be for gender, with "male" and "female" values. Now, if we split the 
file in two, with one for each value, we don't even need to store the whole column 
anymore. We can simply include "female" in the filename, and if the column is 
requested, the program knows how to populate all the values for that column 
because they are all the same.



332     Next Steps

• Summary statistics: Another technique that parquet uses for the groups of 
data in columns is that it contains the minimum and maximum and some other 
statistics for each group. Imagine having a file with 10 million rows, and you want 
to read only the values that are between 10 and 20. Assume that those rows are split 
into groups of one million each. Now, each group would have its minimum and 
maximum values in the header of that group. While scanning, if you come across  
a group where the maximum is six, then you know that your requested values won't 
be in that group. You just skipped a million values by making a single comparison. 

Now, if you have mastered all those techniques and can produce insightful visualizations, 
nice interactivity, and provide really helpful dashboards, you still might not have the 
experience (or desire) to handle Dash in large-scale deployments. This is where you might 
consider Dash Enterprise.

Going large scale with Dash Enterprise
When you have a deployment in a large organization with many users that has an existing 
infrastructure, several things might come up that you might not have considered or 
anticipated. Imagine your app is going to be used by hundreds of people in a company. 
How do you deal with access to the app? How do you manage passwords, and what exactly 
happens when someone resigns, or joins? Are you experienced enough in security that 
you are confident that you can handle such a large deployment?

In these cases, data engineering takes on a much bigger role than previously. Storing the 
data efficiently and securely becomes more important. Scalability and managing it can be 
tricky if it is not your area of expertise. Your main job is to design and create something 
that helps in finding insights, rather than maintaining large-scale apps. In some cases, you 
might have the required skills but don't want to worry about those things and mainly want 
to focus on the interface, the models, and the visualizations.

This is where Dash Enterprise can help. It's basically Dash, as you know it, but with many 
options that are specifically designed for large deployments. 

Dash Enterprise also offers a full online workbench with the popular IDEs and notebooks, 
so you can also collaborate online with co-workers. This might help if a large number of 
users are working together.

Professional services are also provided to large customers, in which case you get access 
to the people who built Dash and have worked with many organizations who have gone 
through many experiences similar to your own, and you can get the help you need from 
them in many important areas.
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These were some ideas, but your creativity, domain knowledge, and hard work are what 
matter at the end, so let's summarize what we covered in this chapter and the book.

Summary
We started by focusing on the importance of basic skills in handling data. We emphasized 
the importance of mastering data manipulation and cleaning skills, which will allow you 
to format your data into the shape that you want and make it easy to analyze and visualize. 
We also mentioned various data visualization techniques and types of charts that can be 
explored to increase your fluency in expressing ideas visually.

We also discussed the other Dash components that we didn't cover in the book, as well as 
the community components that are constantly being developed. Eventually, you might 
decide to develop your own set of components and contribute additional functionality to 
the Dash ecosystem, and I look forward to pip install dash-your-components!

We then discussed exploring machine learning and how we can make our models visual 
and interactive. Establishing data manipulation, visualization, and interactivity skills 
will help you a lot in making your models interpretable and usable, especially for a 
non-technical audience.

We explored some big data options and discussed one of the important projects, although 
there are many more to consider and explore. 

Finally, we talked about the paid enterprise solution that Dash offers, which is Dash 
Enterprise; this solution might make sense when your project is part of a large 
organization or deployment.

Thank you very much for reading, and I hope you enjoyed the book. I look forward to seeing 
your app deployed online, with your own design, models, options, and customizations.





Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as 
well as industry leading tools to help you plan your personal development and advance 
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos 

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at packt.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters, and receive exclusive discounts and offers on Packt books 
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com


336     Other Books You May Enjoy

Other Books You 
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Data Visualization with Bokeh
Kevin Jolly
ISBN: 978-1-78913-540-4

• Installing Bokeh and understanding its key concepts

• Creating plots using glyphs, the fundamental building blocks of Bokeh

• Creating plots using different data structures like NumPy and Pandas

• Using layouts and widgets to visually enhance your plots and add a layer  
of interactivity

• Building and hosting applications on the Bokeh server

• Creating advanced plots using spatial data

https://www.amazon.com/Hands-Data-Visualization-Bokeh-Interactive-ebook/dp/B07DWG4T95


Other Books You May Enjoy     337

Expert Data Visualization

Jos Dirksen

ISBN: 978-1-78646-349-4

• Learn how D3.js works to declaratively define visualizations

• Create charts from scratch by using SVG and the D3.js APIs

• See how to prepare data for easy visualization using D3.js.

• Visualize hierarchical data using chart types provided by D3.js

• Explore the different options provided by D3.js to visualize linked data such  
as graphs

• Spice up your visualizations by adding interactivity and animations

• Learn how to use D3.js to visualize and interact with Geo- and Gis-related 
information sources

https://www.amazon.com/Expert-Data-Visualization-Jos-Dirksen/dp/1786463490


338     

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and 
tech professionals, just like you, to help them share their insight with the global tech 
community. You can make a general application, apply for a specific hot topic that we are 
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what 
you think
Please share your thoughts on this book with others by leaving a review on the site that 
you bought it from. If you purchased the book from Amazon, please leave us an honest 
review on this book's Amazon page. This is vital so that other potential readers can see 
and use your unbiased opinion to make purchasing decisions, we can understand what 
our customers think about our products, and our authors can see your feedback on the 
title that they have worked with Packt to create. It will only take a few minutes of your 
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com


Index

Symbols
2D histogram

creating  224, 225

A
animation frames

utilizing, to add layer to plots  183-186
Apache Arrow project  330
app

bugs, fixing  318
changes, making  318
dynamically generated URLs, 

adding to  294, 295
functionality, adding to  128-130
Link component  286-288
Location component  285
maintenance and updates, 

managing  317
new URL interactivity, 

adding to  296-298
performance, optimizing  328, 329
Python packages, updating  318-320
restructuring, to cater to 

multiple layouts  290-292

running, on server  310-313
running, with WSGI  313, 314
server, maintaining  320
setting up, with WSGI  313, 314

application programming 
interface (API)  307

app.py file  8
app's layout

users, allowing to add dynamic 
components  272-274

B
bar charts

linking  117-121
plotting, horizontally  109-115
plotting, vertically  109-115

big data tools
using  330

Bootstrap  14
Bootstrap, benefits

encoded colors  14
grid system  14
prebuilt components  14
responsiveness  14
themes  14



340     Index

C
callback functions

chart, making interactive with  59-62
input  29
output  28
Python function  29
using, with maps  186-189

charts
making, interactive with 

callback function  59-62
splitting, with facets  130-134

choropleth maps
exploring  180-183

clustering  238-242
clusters

optimal number, searching of  242-245
colors

mapping, with scatter plots  151
setting, with scatter plots  151
using, with continuous 

variables  152-155
using, with discrete variables  159-161

color scales
creating, manually  156-158

command-line interface (CLI)  307
components, that control 

other components
creating  266-271

continuous variables
about  152
colors, using with  152-155

countries
clustering, by population  246-249

country file  77-82
country-series file  83

D
Dash

about  7
exploring  6

Dash app
creating  9-11
Dash Bootstrap Components, 

adding to  19
function, incorporating  32-39
HTML Components, adding to  11-13
layout structure  14
running  9-11
structure  8, 9
themes, managing  14

Dash app, callback functions
properties  39-41

Dash Bootstrap Components
about  4, 7
adding, to Dash app  19
reference link  18

Dash components
creating  327
exploring  326
id parameter  26, 27

Dash Core Components  7
Dash Enterprise

handling, in large-scale 
deployments  332

Dash HTML Components  4, 7
Dash inputs and outputs

about  28
callback functions, implementing  30, 31
callback functions, specifying  30
determining  28, 29

Dash packages
about  6, 7
Dash  7



Index   341

Dash Bootstrap Components  7
Dash Core Components  7
Dash HTML Components  7

data attribute  47, 48
data files

about  84, 85
country file  77-82
country-series file  83
exploring  74, 75
footnotes file  83, 84
series file  75-77

DataFrames
melting  85-87
merging  90-92
pivoting  88, 89

data manipulation skills
improving  325
role  74

dataset 
columns or features, adding to  103
new data, adding to  103
used, for creating Plotly 

Express chart  100-102
DataTable

creating  225-227
data visualization process

data manipulation  58
data visualization techniques

exploring  325, 326
data, with scikit-learn

missing values, handling  249, 250
deployment workflow

components  303
establishing  302-304

development workflow
establishing  302-304

discrete variables
about  152

colors, using with  159-161
dropdowns

linking  117-121
dropdowns, additional features

app theme, modifying  135-137
components, resizing  137
exploring  134
placeholder text, adding  134, 135

dynamically generated URLs
adding, to app  294, 295

E
encoded colors  18

F
facets

used, for splitting charts  130-134
Figure object  98-100

about  44-46
configuration options  52
converting, into HTML  53
converting, into images  54
converting, ways exploring  53
exploring  51
plotting, with real dataset  54-57
theming  65, 66

Flask  6
footnotes file  83, 84
functionality

adding, to app  128-130

G
graph_objects module, usage

customizations  99
non-standard visualizations  99



342     Index

sub-plots  100
grid system

about  15
elements, displaying side by 

side in columns  16-18

H
histogram

adding, to app  229-232
color, using to split data  214, 215
creating  210-212
customization, by modifying 

bins  212, 213
interactivity, adding  218-224
multiple bars display, exploring  215-218

hosting account
creating  305-307

HTML
Figure object, converting into  53

HTML components
adding, to Dash app  11-13

HTML tutorial
reference link  13

HyperText Transfer Protocol (HTTP)  312

I
id parameter  26
images

Figure object, converting into  54
income share DataFrame

creating  123-128
Input

versus State  262-266
integrated development 

environment (IDE)  4

interactive KMeans clustering app
creating  252-256

interactive map
incorporating, into app  206-208

Internet Protocol (IP)  305
isolated app

functionality, adding  62-65

J
JupyterDash object  22
Jupyter Notebooks

functionality, isolating for 
management and debug  23-25

using, to execute Dash apps  22

L
layout attribute  49, 50
lines  143
Link component  286-288
Location component  285, 286
logarithmic scales

using  165-167
long format (tidy) data

about  68
attributes  73, 74
Plotly Express, example chart  69-72

M
machine learning models

operationalizing  327
visualizing  327

Mapbox maps
exploring  199-205

map options and tools
exploring  206



Index   343

map projection  195, 196
maps

callback functions, using with  186-189
Markdown component

creating  190-195
implementing  192-194
working  190, 191

markers
about  143
opacity, controlling  163, 164
size, controlling  163, 164

marks
customizing, of sliders  171-176

melt method
about  86
code and parameters, overview  86

multiple bar charts
displaying  122, 123

multiple histograms
using  212-214

multiple scatter traces
creating, in single plot  148-151

N
new URL interactivity

adding, to app  296-298
Node.js

URL  5

O
optimal number

searching, of clusters  242-245
outlier values

handling  162, 163
over-plotting

handling  162, 163

P
parquet package, techniques

about  331
column orientation  331
encoding  331
partitioning  331
summary statistics  332

parsed URL components
used, for modifying app  289

pattern-matching callbacks  275-280
Plotly  6
Plotly Express

chart, creating with dataset   100-102
example chart  69-72
Figure object  98-100
learning  92-98

Plotly Express, functions
approaches  93

prebuilt components  18
preparation skills

improving  325
Python function

creating  25, 26
Python packages

updating  318-320
Python virtual environment

setting up  4, 5

R
RangeSlider component  169
range sliders  168
React  6
responsiveness  15



344     Index

S
scatter map plots

using  197-199
scatter plots

go.Scatter object, in mode 
parameter  143-147

used, for mapping colors  151
used, for setting colors  151
using, options  142, 143

scikit-learn
data, preparing with  249
data, scaling with  250, 251

Secure Shell (SSH)
server, connecting with  307-309

series file  75-77
server

app, running on  310-313
connecting, with SSH  307-309
custom domain, adding  320
maintaining  320
packages, updating  320
security  320
security certificate, setting up  320

single plot
multiple scatter traces, 

creating in  148-151
Slider component

about  169
example  170

sliders
about  168
marks, customizing of  171-176
values, customizing of  171-176

State
about  261, 262
versus Input  262-266

T
table

adding, to app  229-232
look and feel, controlling  227-229

text  143
themes  14, 15
trace  45

U
Uniform Resource Locator (URL)

about  312
parsing  289

update workflow
establishing  302-304

URL-based content
displaying  293, 294

V
values

customizing, of sliders  171-176
vertical bar charts

creating, with many values  116, 117
virtual server

creating  305-307

W
web server

configuring  314-317
setting up  314-317

Web Server Gateway Interface (WSGI)
app, running with  313, 314
app, setting up with  313, 314




	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1: 
Building a Dash App
	Chapter 1: Overview of the Dash Ecosystem
	Technical requirements
	Setting up your environment
	Exploring Dash and other supporting packages
	The different packages that Dash contains

	Understanding the general structure of a 
Dash app
	Creating and running the simplest app
	Adding HTML and other components to the app
	Adding HTML components to a Dash app

	Learning how to structure the layout and managing themes
	Themes
	Grid system and responsiveness
	Prebuilt components
	Encoded colors
	Adding Dash Bootstrap components to our app

	Summary

	Chapter 2: Exploring the Structure of a 
Dash App
	Technical requirements
	Using Jupyter Notebooks to run Dash apps
	Isolating functionality for better management and debugging

	Creating a standalone pure Python function
	The id parameter of Dash components
	Dash inputs and outputs
	Determining your inputs and outputs
	Specifying your callback function
	Implementing the callback

	Incorporating the function into the app
	Properties of Dash's callback functions

	Summary

	Chapter 3: Working with Plotly's Figure Object
	Technical requirements
	Understanding the Figure object
	Getting to know the data attribute
	Getting to know the layout attribute
	Interactively exploring the Figure object
	Configuration options for the Figure object

	Exploring the different ways of converting figures
	Converting figures into HTML
	Converting figures into images
	Plotting using a real dataset
	Data manipulation as an essential part of the data visualization process
	Making the chart interactive with a callback function
	Adding the new functionality to our app
	Theming your figures

	Summary

	Chapter 4: Data Manipulation and Preparation, Paving the Way to Plotly Express
	Technical requirements
	Understanding long format (tidy) data
	Plotly Express example chart
	Main attributes of long format (tidy) data

	Understanding the role of data manipulation skills
	Exploring the data files
	Melting DataFrames
	Pivoting DataFrames
	Merging DataFrames

	Learning Plotly Express
	Plotly Express and Figure objects
	Creating a Plotly Express chart using the dataset
	Adding new data and columns to our dataset

	Summary

	Section 2: 
Adding Functionality to Your App with Real Data
	Chapter 5: Interactively Comparing Values with Bar Charts and Drop-Down Menus
	Technical requirements
	Plotting bar charts vertically and horizontally
	Creating vertical bar charts with many values

	Linking bar charts and dropdowns
	Exploring different ways of displaying multiple bar charts (stacked, grouped, overlaid, and relative)
	Creating the income share DataFrame
	Incorporating the functionality into our app

	Using facets to split charts into multiple 
sub-charts – horizontally, vertically, or wrapped
	Exploring additional features of dropdowns
	Adding placeholder text to dropdowns
	Modifying the app's theme
	Resizing components

	Summary

	Chapter 6: Exploring Variables with Scatter Plots and Filtering Subsets with Sliders
	Technical requirements
	Learning about the different ways of using scatter plots: markers, lines, and text
	Markers, lines, and text

	Creating multiple scatter traces in a single plot
	Mapping and setting colors with scatter plots
	Discrete and continuous variables
	Using color with continuous variables
	Manually creating color scales
	Using color with discrete variables

	Handling over-plotting and outlier values by managing opacity, symbols, and scales
	Controlling the opacity and size of markers
	Using logarithmic scales

	Introducing sliders and range sliders
	Customizing the marks and values of sliders 
	Summary

	Chapter 7: Exploring Map Plots and Enriching Your Dashboards with Markdown
	Technical requirements
	Exploring choropleth maps
	Utilizing animation frames to add a new layer to your plots
	Using callback functions with maps
	Creating a Markdown component
	Understanding map projections
	Using scatter map plots
	Exploring Mapbox maps
	Exploring other map options and tools
	Incorporating an interactive map into our app
	Summary

	Chapter 8: Calculating 
Data Frequency 
and Building Interactive Tables
	Technical requirements
	Creating a histogram
	Customizing the histogram by modifying its bins and using multiple histograms
	Using color to further split the data
	Exploring other ways of displaying multiple bars in histograms

	Adding interactivity to histograms
	Creating a 2D histogram
	Creating a DataTable
	Controlling the look and feel of the table 
(cell width, height, text display, and more)
	Adding histograms and tables to the app
	Summary
	What we have covered so far

	Section 3: 
Taking Your App to the Next Level
	Chapter 9: Letting Your Data Speak for Itself with Machine Learning
	Technical requirements
	Understanding clustering
	Finding the optimal number of clusters
	Clustering countries by population
	Preparing data with scikit-learn
	Handling missing values
	Scaling data with scikit-learn

	Creating an interactive KMeans clustering app
	Summary

	Chapter 10: Turbo-Charge 
Your Apps with Advanced Callbacks
	Technical requirements
	Understanding State
	Understanding the difference between Input and State

	Creating components that control other components
	Allowing users to add dynamic components to the app
	Introducing pattern-matching callbacks
	Summary

	Chapter 11: URLs and 
Multi-Page Apps
	Technical requirements
	Getting to know the Location and Link components
	Getting to know the Link component

	Parsing URLs and using their components to modify parts of the app
	Restructuring your app to cater to 
multiple layouts
	Displaying content based on the URL

	Adding dynamically generated URLs to the app
	Incorporating the new URL interactivity into the app
	Summary

	Chapter 12: Deploying Your App
	Technical requirements
	Establishing the general development,deployment, and update workflow
	Creating a hosting account and virtual server
	Connecting to your server with SSH
	Running the app on the server
	Setting up and running the app with a WSGI
	Setting up and configuring the web server
	Managing maintenance and updates
	Fixing bugs and making changes
	Updating Python packages
	Maintaining your server

	Summary

	Chapter 13: Next Steps
	Technical requirements
	Expanding your data manipulation and preparation skills
	Exploring more data visualization techniques
	Exploring other Dash components
	Creating your own Dash component
	Operationalizing and visualizing machine learning models
	Enhancing performance and using big data tools
	Going large scale with Dash Enterprise
	Summary
	Why subscribe?

	Other Books You May Enjoy
	Index

